Transport of nanoparticles in magnetic targeting: Comparison of magnetic, diffusive and convective forces and fluxes in the microvasculature, through vascular pores and across the interstitium.

Microvasc Res

Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. Box 453, GR 541 24, Thessaloniki, Greece. Electronic address:

Published: July 2020

Magnetic nanoparticle targeting in tumor areas is examined by an integrated consideration of the transport steps from the microcirculation to the vascular walls, through their pores and into the interstitium. Brownian, flow- and magnetically induced forces and fluxes are compared on the basis of order-of-magnitude estimates and numerical simulations. The main resistance to nanoparticle transport is found to be within the interstitium, since fluxes there are much smaller than the extravasation fluxes, and the latter are much smaller than the convective-diffusive ones within the microvasculature. For typical nanoparticle sizes, magnetic properties and strengths of magnetic fields as in MRI equipment, magnetic targeting is rather unlikely to play a significant role in directing nanoparticles towards vascular walls or through vascular pores. However, magnetic drift can have an effect within the interstitium and a tangible overall outcome, despite the fact that typical magnetic forces are smaller than Brownian ones or interstitial flow convective forces. The reason behind such an effect has to do with the much larger length scales involved in interstitial transport. Magnetic drift creates a front of large nanoparticle concentrations, flooding the inadequately perfused and poorly accessible tumor area. On the basis of time-scale estimates, it is suggested that sequential cycles of magnetic nanoparticle dosage may help in more efficient access of cell layers ever closer to the tumor center. The present results may assist in the quest for optimal parameters and conditions, given the conflicting requirements for particles small enough to evade hydrodynamic and steric hindrances in vascular pores and the interstitium, yet large enough to bear a substantial magnetic load.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2020.104007DOI Listing

Publication Analysis

Top Keywords

vascular pores
12
pores interstitium
12
magnetic
11
magnetic targeting
8
convective forces
8
forces fluxes
8
magnetic nanoparticle
8
vascular walls
8
fluxes smaller
8
magnetic drift
8

Similar Publications

Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.

View Article and Find Full Text PDF

Bolstered bone regeneration by multiscale customized magnesium scaffolds with hierarchical structures and tempered degradation.

Bioact Mater

April 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.

Addressing irregular bone defects is a formidable clinical challenge, as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration, resulting in suboptimal healing. This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure (macro-, meso-, and nano-scales) and tempered degradation (microscale), intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs. For the hierarchical structure, at the macroscale, it can feature anatomic geometries for seamless integration with the bone defect; The mesoscale pores are devised with optimized curvature and size, providing an adequate mechanical response as well as promoting cellular proliferation and vascularization, essential for natural bone mimicry; The nanoscale textured surface is enriched with a layered double hydroxide membrane, augmenting bioactivity and osteointegration.

View Article and Find Full Text PDF

Purpose: Cardiomyocyte death is a major cytopathologic response in acute myocardial infarction (AMI) and involves complex inflammatory interactions. Although existing reports indicating that mixed lineage kinase domain-like protein (MLKL) is involved in macrophage necroptosis and inflammasome activation, the downstream mechanism of MLKL in necroptosis remain poorly characterized in AMI.

Methods: MLKL knockout mice (MLKL), RIPK3 knockout mice (RIPK3), and macrophage-specific MLKL conditional knockout mice (MLKL) were established.

View Article and Find Full Text PDF

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!