Feasibility of changing for a rechargeable constant current neurostimulator in Parkinson's disease.

Rev Neurol (Paris)

Neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, Lyon, France; Univ Lyon, université Lyon 1, faculté de médecine Lyon-Sud, Lyon, France; CNRS, UMR 5229, institut des sciences cognitives Marc-Jeannerod, Bron, France.

Published: March 2021

Background: Little is known about outcome and settings adaptations after replacement of constant-voltage non-rechargeable implantable pulse generator (CV-nrIPG) by constant-current rechargeable IPG (CC-rIPG).

Objective: To determine the feasibility and safety of replacing a CV-nrIPG by a CC-rIPG in Parkinson's disease (PD) and the subsequent outcome.

Methods: A prospective cohort of thirty PD patients, whose CV-nrIPG was replaced by a CC-rIPG in University Hospital of Lyon between January 2017 and December 2018 (rIPG group) and 39 PD patients, who underwent the replacement of a CV-nrIPG by the same device in 2016 (nrIPG group), were enrolled in this study. Three surgeons performed the operations. Duration of hospitalization for the replacement as well as the number of in or outpatient visits during the first 3 months after the surgery were recorded. In the rIPG group, we compared preoperative DBS settings and the theoretical amplitude estimated using Ohm's law to the amplitude used at the end of follow-up. We assessed patients' and clinicians' opinion on the patient global functioning after the replacement using Clinical Global Impression score.

Results: Duration of hospitalization (P=0.47) and need for additional hospitalizations (P=0.73) or consultations (P=0.71) to adapt DBS parameters did not differ between the two groups. Neurological condition (CGI score) was considered as unchanged by both patients and neurologists. Final amplitude of stimulation using CC-rIPG was not predicted by Ohm's law in most cases.

Conclusions: Replacing CV-nrIPG by CC-rIPG is safe and well tolerated but require neurological expertise to set the new parameters of stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurol.2020.02.007DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
replacing cv-nripg
8
cv-nripg cc-ripg
8
ripg group
8
duration hospitalization
8
ohm's law
8
cv-nripg
5
feasibility changing
4
changing rechargeable
4
rechargeable constant
4

Similar Publications

Unlabelled: Parkinson's Disease (PD) is a neurodegenerative disorder that primarily affects persons aged 65 and older. It leads to a decline in motor function as a result of the buildup of abnormal protein deposits called Lewy bodies in the brain. Existing therapies exhibit restricted effectiveness and undesirable side effects.

View Article and Find Full Text PDF

Tracing TMEM106B fibril deposition in aging and Parkinson's disease with dementia brains.

Life Med

February 2024

Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.

Transmembrane protein 106B (TMEM106B), previously identified as a risk factor in frontotemporal lobar degeneration, has recently been detected to form fibrillar aggregates in the brains of patients with various neurodegenerative diseases (NDs) and normal elders. While the specifics of when and where TMEM106B fibrils accumulate in human brains, as well as their connection to aging and disease progression, remain poorly understood. Here, we identified an antibody (NBP1-91311) that directly binds to TMEM106B fibrils extracted from the brain and to Thioflavin S-positive TMEM106B fibrillar aggregates in brain sections.

View Article and Find Full Text PDF

Background: The clinical pictures of essential tremor (ET) and Parkinson's disease (PD) are often quite mimic at the early stage, and longstanding ET may ultimately develop to PD, that is, PD with "antecedent ET". Early diagnosis and differentiation of the two are essential for predicting disease progression and formulating individualized treatment plans. However, current approaches remain challenging.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!