A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Association of NPAC score with survival after acute myocardial infarction. | LitMetric

Association of NPAC score with survival after acute myocardial infarction.

Atherosclerosis

Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Department of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PR China. Electronic address:

Published: May 2020

Background And Aims: Risk stratification in acute myocardial infarction (AMI) is important for guiding clinical management. Current risk scores are mostly derived from clinical trials with stringent patient selection. We aimed to establish and evaluate a composite scoring system to improve short-term mortality classification after index episodes of AMI, independent of electrocardiography (ECG) pattern, in a large real-world cohort.

Methods: Using electronic health records, patients admitted to our regional teaching hospital (derivation cohort, n = 1747) and an independent tertiary care center (validation cohort, n = 1276), with index acute myocardial infarction between January 2013 and December 2017, as confirmed by principal diagnosis and laboratory findings, were identified retrospectively.

Results: Univariate logistic regression was used as the primary model to identify potential contributors to mortality. Stepwise forward likelihood ratio logistic regression revealed that neutrophil-to-lymphocyte ratio, peripheral vascular disease, age, and serum creatinine (NPAC) were significant for 90-day mortality (Hosmer- Lemeshow test, p = 0.21). Each component of the NPAC score was weighted by beta-coefficients in multivariate analysis. The C-statistic of the NPAC score was 0.75, which was higher than the conventional Charlson's score (C-statistic = 0.63). Judicious application of a deep learning model to our dataset improved the accuracy of classification with a C-statistic of 0.81.

Conclusions: The NPAC score comprises four items from routine laboratory parameters to basic clinical information and can facilitate early identification of cases at risk of short-term mortality following index myocardial infarction. Deep learning model can serve as a gatekeeper to facilitate clinical decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2020.03.004DOI Listing

Publication Analysis

Top Keywords

npac score
16
myocardial infarction
16
acute myocardial
12
short-term mortality
8
logistic regression
8
deep learning
8
learning model
8
score
5
association npac
4
score survival
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!