An inexorable depletion of groundwater occurs where groundwater abstraction exceeds the natural recharge, a typical state of (semi-)arid regions, which calls for sustainable management of groundwater resources. This study aims to assess the available storage and recharge rates on a national scale in time and space by modelling the natural recharge in combination with a method to evaluate changing groundwater volumes, which revealed measures to quantify the overdraft of the observed national groundwater resources in Jordan. Applying the combination of hydrological model and method to evaluate changing groundwater volumes, a climate-driven systematic decline of groundwater recharge was eliminated as responsible process, while overdraft leads to dropping groundwater tables. The major findings are, the intensity of groundwater abstraction from a basin becomes visible through the fact, that simulated baseflow exceeds significantly the observed baseflow. About 75% of Jordan's groundwater basins are subject to intense groundwater depletion, reaching annual rates of up to 1 m in some basins. The most affected areas are the basins Zarka, Azraq and the predominantly fossil groundwater reservoirs in Southern Jordan. Contrasting the past, when variable annual precipitation patterns did not negatively influence groundwater recharge, simulations show significantly reduced annual groundwater recharge all over Jordan. Particularly affected is the agricultural backbone in the Jordan Mountains, where recharge rates are predicted to vary between -30 mm/yr and +10 mm/yr in the coming decades, being reflected in the disappearance of freshwater springs and ascending saltwater. The applied methodology is relevant and transferable to other data- and water scarce areas worldwide, allowing (i) a fast estimation of groundwater reservoir development on a national scale and (ii) an investigation of long-term effects of overdraft.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138478DOI Listing

Publication Analysis

Top Keywords

groundwater
15
national scale
12
groundwater recharge
12
groundwater abstraction
8
natural recharge
8
groundwater resources
8
recharge rates
8
method evaluate
8
evaluate changing
8
changing groundwater
8

Similar Publications

To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.

View Article and Find Full Text PDF

Groundwater monitoring is a crucial part of groundwater remediation that produces data from various strategically placed wells to maintain a water quality standard. Using the United States Department of Energy's Hanford 100-HRD area well data, recurrent neural networks are trained in the form of one-dimensional Convolutional Neural Networks (CNNs), Long Short Term Memory (LSTM) networks, and Dual-stage Attention-based LSTM (DA-LSTM) networks to reduce monitoring costs and increase data sampling responsiveness that is subject to laboratory analysis delays, with the best network being DA-LSTM achieving an R score of 0.82.

View Article and Find Full Text PDF

With the growing emphasis on environmental protection, many coal mines in northern China were closed. However, the cessation of pumping operations in those closed mines has caused a rise in groundwater levels, giving rise to various safety and environmental concerns. Understanding the patterns of water level recovery is vital for effectively managing abandoned mine sites and ensuring the uninterrupted production of adjacent coal mines.

View Article and Find Full Text PDF

Study on numerical simulation of groundwater flow field and slope stability in multi-aquifer open pit mine.

Sci Rep

December 2024

Liaoning Institute of Technology and Equipment for Mineral Resources Development and Utilisation in Higher Educational Institutions, Liaoning Technical University, Fuxin, 123000, Liaoning, China.

Water is one of the most important influences on slope stability in open pit mines. In order to solve the problem of slope stability analysis in multi-aquifer open pit mines, the open pit mine in Block I of Thar Coalfield in Pakistan with multiple aquifers was taken as the research background. The groundwater flow field at different excavation phases was analyzed by numerical simulation method.

View Article and Find Full Text PDF

A novel magnetic mesoporous fluorinated metal-organic framework material (FeO@MIP-206-F) has been synthesized specifically for application as an adsorbent for perfluoroalkyl carboxylic acids (PFCAs) extraction by magnetic solid-phase extraction (MSPE). The carefully designed FeO@MIP-206-F material features an appropriate porosity, open metal sites of Zr, and functional groups (fluorine and amino) conducive to the adsorption process. The distinctive architecture of the material endows it with exceptional extraction capabilities for PFCAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!