Hydroponic experiment was conducted to investigate the biochemical responses and accumulation behaviour of cadmium (Cd) in aquatic fern, Ceratopteris pteridoides, under four different levels of exposure. Plants were grown in 10 μM (CdT1), 20 μM (CdT2), 40 μM (CdT3) and 60 μM (CdT4) concentrations of Cd for 12 consecutive days and Cd accumulation in different plant parts, cell levels and growth medium was estimated. In C. pteridoides, Cd removal kinetics was best described by pseudo-second-order kinetic model. Increased accumulation of Cd in the plants was detected in a concentration dependent manner with maximum under 60 μM of Cd (CdT4) exposure (191.38 mg kg, 186.19 mg kg and 1316.34 mg kg in leaves, stems and roots, respectively). Cell wall of C. pteridoides is identified as crucial Cd storage site with the highest (28-69%) accumulation followed by organelles (14-44%) and soluble fraction (6-46%). Increased leaf proline, malondialdehyde (MDA) and protein content with significant reduction (P < 0.05) in chlorophyll concentration and upregulation of antioxidant enzymes catalase (CAT), guaiacol peroxidase (POD) and superoxide dismutase (SOD) reveals the presence of Cd resistance mechanism in C. pteridoides. Calculated higher (>1) bioconcentration factor (BCF) and lower (<1) translocation factor (TF) values evinced the suitability of C. pteridoides in Cd phytostabilization rather than phytoextraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.110599 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!