Background And Objectives: As a traditional Chinese Materia Medica (CMM), the Compound Danshen Dripping Pill (CDDP) is widely used for the treatments of cardiovascular diseases. In view of its undefined applicable population and dosage, a population pharmacokinetic (PPK) study is required. The objective of this study was to explore the feasibility of multi-component CMM PPK in rat plasma after oral administration of CDDP based on sparse sampling.

Methods: In this research, a simple, rapid and highly sensitive UFLC-MS/MS method for the simultaneous determination of tanshinol (TSL), ginsenoside Rb1 (GRb1) and ginsenoside Rg1 (GRg1) has been successfully developed in rat plasma. Moreover, the validated method has been applied to a PPK study of CDDP based on sparse data. We established the PPK models for these three main active constituents using a nonlinear mixed-effects model, taking into account of factors such as gender, age in weeks and weight.

Results: The PPK models of TSL and GRb1 were best described by a one-compartment model with linear elimination and first-order absorption. The model of GRg1 was best described by a two-compartment model with first-order absorption. Bootstrap validation and a visual predictive check confirmed the predictive ability, the model stability and the precision of the parameter estimates from these models.

Conclusion: As a preliminary exploration toward the clinical population pharmacokinetic research, this study provides a reference for the population pharmacokinetic study of traditional CMM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13318-020-00618-4DOI Listing

Publication Analysis

Top Keywords

population pharmacokinetic
16
pharmacokinetic study
12
rat plasma
12
ginsenoside rb1
8
plasma oral
8
oral administration
8
compound danshen
8
danshen dripping
8
ppk study
8
ppk models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!