Diabetes is associated with an increase in skeletal fragility and risk of fracture. However, the underlying mechanism for the same is not well understood. Specifically, the results from osteoblast cell culture studies are ambiguous due to contradicting reports. The use of supraphysiological concentrations in these studies, unachievable in vivo, might be the reason for the same. Therefore, here, we studied the effect of physiologically relevant levels of high glucose during diabetes (11.1 mM) on MC3T3-E1 osteoblast cell functions. The results showed that high glucose exposure to osteoblast cells increases their differentiation and mineralization without any effect on the proliferation. However, high glucose decreases their migratory potential and chemotaxis with a decrease in the associated cell signaling. Notably, this decrease in cell migration in high glucose conditions was accompanied by aberrant localization of Dynamin 2 in osteoblast cells. Besides, high glucose also caused a shift in mitochondrial dynamics towards the appearance of more fused and lesser fragmented mitochondria, with a concomitant decrease in the expression of DRP1, suggesting decreased mitochondrial biogenesis. In conclusion, here we are reporting for the first time that hyperglycemia causes a reduction in osteoblast cell migration and chemotaxis. This decrease might lead to an inefficient movement of osteoblasts to the erosion site resulting in uneven mineralization and skeletal fragility found in type 2 diabetes patients, in spite of having normal bone mineral density (BMD).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-020-03732-8DOI Listing

Publication Analysis

Top Keywords

high glucose
20
osteoblast cell
16
cell migration
12
chemotaxis decrease
12
migration chemotaxis
8
mitochondrial biogenesis
8
skeletal fragility
8
osteoblast cells
8
osteoblast
6
cell
6

Similar Publications

Introduction: Lactic acid bacteria are prized for their probiotic benefits and gut health improvements. This study assessed five LAB isolates from Neera, with RAMULAB51 (, GenBank ON171686.1) standing out for its high hydrophobicity, auto-aggregation, antimicrobial activity, and enzyme inhibition.

View Article and Find Full Text PDF

Purpose: To examine the effects of structured aerobic exercise on 24-hour mean blood glucose outcomes assessed by continuous glucose monitors in adults with type 2 diabetes.

Methods: The study established specific inclusion and exclusion criteria and conducted a comprehensive search across five databases, including PubMed, Web of Science, Embase, Cochrane Library, and EBSCOhost from the start year of each database's coverage to 22 July 2024. The quality of the included studies was evaluated using the Cochrane Handbook 5.

View Article and Find Full Text PDF

Introduction: This study aims to explore the risk factors in the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).

Material And Methods: Relevant studies were comprehensively searched from PubMed, Web of Science, Cochrane Library, and Embase up to March 12. Data extraction was performed.

View Article and Find Full Text PDF

Background: The triglycerides to Apolipoprotein A1 ratio (TG/APOA1) holds promise to be a more valuable index of insulin resistance for the diagnosis of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). This study aims to evaluate the correlation between TG/APOA1 and MAFLD, as well as compare the efficacy of TG/APOA1 with triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c) and triglyceride-glucose (TyG) index in identifying MAFLD among individuals with T2DM.

Method: This study consecutively recruited 779 individuals with T2DM for the investigation.

View Article and Find Full Text PDF

The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!