The crystal structure of phycocyanin (pr-PC) isolated from Phormidium rubidum A09DM (P. rubidum) is described at a resolution of 1.17 Å. Electron density maps derived from crystallographic data showed many clear differences in amino acid sequences when compared with the previously obtained gene-derived sequences. The differences were found in 57 positions (30 in α-subunit and 27 in β-subunit of pr-PC), in which all residues except one (β145Arg) are not interacting with the three phycocyanobilin chromophores. Highly purified pr-PC was then sequenced by mass spectrometry (MS) using LC-MS/MS. The MS data were analyzed using two independent proteomic search engines. As a result of this analysis, complete agreement between the polypeptide sequences and the electron density maps was obtained. We attribute the difference to multiple genes in the bacterium encoding the phycocyanin apoproteins and that the gene sequencing sequenced the wrong ones. We are not implying that protein sequencing by mass spectrometry is more accurate than that of gene sequencing. The final 1.17 Å structure of pr-PC allows the chromophore interactions with the protein to be described with high accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491960 | PMC |
http://dx.doi.org/10.1007/s11120-020-00746-7 | DOI Listing |
Cyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse and phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.
View Article and Find Full Text PDFOrganoselenocyanates have attracted considerable attention in recent years due to their therapeutic potential and versatility in medicinal chemistry. Here, we report on the mechanism of inhibition by 5-phenylcarbamoylpentyl selenocyanide (SelSA-2), an analogue of the well-characterized histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA, a.k.
View Article and Find Full Text PDFThe [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.
View Article and Find Full Text PDFTagging RNAs with fluorogenic aptamers has enabled imaging of transcripts in living cells, thereby revealing novel aspects of RNA metabolism and dynamics. While a diverse set of fluorogenic aptamers has been developed, a new generation of aptamers are beginning to exploit the ring-opening of spirocyclic rhodamine dyes to achieve robust performance in live mammalian cells. These fluorophores have two chemical states: a colorless, cell-permeable spirocyclic state and a fluorescent zwitterionic state.
View Article and Find Full Text PDFEuroasian J Hepatogastroenterol
December 2024
Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan.
Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.
Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!