Reactive responses to balance perturbations have been shown to be improved by training. This investigation aimed to compare the effects of block and random training perturbation schedules on stability gains of compensatory arm and leg movements in response to unpredictable large-magnitude balance perturbations. Perturbations were produced by means of sudden displacements of the support base, associating mode (rotation, translation, combined), direction, and velocity of platform motion. Healthy young participants were assigned to one of three groups: random, block, and control. For the random group, perturbation sequence was unpredictable. For the block group, each balance perturbation was repeated over blocks of four trials. Controls were tested only, serving as reference of first trial responses in the post-test. Evaluation was made through a scale rating stability of compensatory arm and leg movements (CALM). We probed immediate and persistence gains (1-week retention), in addition to generalizability to perturbations of higher velocity and to dual-tasking (mental subtraction). In the post-test both the block and random groups achieved higher leg and global scores in comparison with controls in the most challenging perturbations. In retention and transfer tests, results for the global score indicated higher values for the random than for the block and control groups. These results support the conclusion that high but not low contextual interference in perturbation-based balance training leads to enduring and generalizable increased stability gains of compensatory limb movements in response to unpredictable balance perturbations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-020-05806-x | DOI Listing |
Sci Rep
January 2025
Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
Over 50% of individuals with lower limb loss report a fear of falling and avoiding daily activities partly due to a lack of plantar sensation. Providing direct somatosensory feedback via neural stimulation holds promise for addressing this issue. In this study, three individuals with lower limb loss received a sensory neuroprosthesis (SNP) that provided plantar somatosensory feedback corresponding to prosthesis-floor interactions perceived as arising from the missing foot generated by electrically activating the peripheral nerves in the residuum.
View Article and Find Full Text PDFSleep
January 2025
UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.
View Article and Find Full Text PDFFoods
December 2024
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.
Pistachio nuts are valued for their sensory qualities, nutritional benefits, and health-promoting properties. Pistachio oil has also gained interest for its bioactive compounds, though these are sensitive to processing and environmental stresses. While pistachio-based products are commercially available, little research has addressed the emulsifying properties of crude pistachio oil or its impact on the stability and bioactive profile of oil-in-water (O/W) emulsions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia.
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!