Eosinophils are key effector cells in allergic diseases. Here we investigated Mcl-1 (an anti-apoptotic protein) in experimental allergic airway inflammation using transgenic overexpressing human Mcl-1 mice (hMcl-1) and reducing Mcl-1 by a cyclin-dependent kinase inhibitor. Overexpression of Mcl-1 exacerbated allergic airway inflammation, with increased bronchoalveolar lavage fluid cellularity, eosinophil numbers and total protein, and an increase in airway mucus production. Eosinophil apoptosis was suppressed by Mcl-1 overexpression, with this resistance to apoptosis attenuated by cyclin-dependent kinase inhibition which also rescued Mcl-1-exacerbated allergic airway inflammation. We propose that targeting Mcl-1 may be beneficial in treatment of allergic airway disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361019PMC
http://dx.doi.org/10.1136/thoraxjnl-2019-213204DOI Listing

Publication Analysis

Top Keywords

allergic airway
20
airway inflammation
16
cyclin-dependent kinase
8
mcl-1
7
allergic
6
airway
6
mcl-1 protects
4
protects eosinophils
4
eosinophils apoptosis
4
apoptosis exacerbates
4

Similar Publications

Recent studies have highlighted the critical role of lipid metabolism in macrophages concerning lung inflammation. However, it remains unclear whether lipid metabolism is involved in macrophage extracellular traps (METs). We analyzed the GSE40885 dataset from the GEO database using weighted correlation network analysis (WGCNA) and further selection using the least absolute shrinkage and selection operator (LASSO) regression.

View Article and Find Full Text PDF

Allergic airway inflammation is a universal airway disease induced by inhaling allergens. Published data show that RNF128, an E3 ligase, promotes Th2 activation in the OVA-induced asthma model. Recent advances have shown that group 2 innate lymphoid cells (ILC2s) produce the cytokines IL-5 and IL-13 to mediate type 2 immune response.

View Article and Find Full Text PDF

Laboratory mice are instrumental for preclinical research but there are serious concerns that the use of a clean standardized environment for specific-pathogen-free (SPF) mice results in poor bench-to-bedside translation due to their immature immune system. The aim of the present study was to test the importance of the gut microbiota in wild vs. SPF mice for evaluating host immune responses in a house-dust-mite-induced allergic airway inflammation model without the influence of pathogens.

View Article and Find Full Text PDF

: Airborne exogenous antigen inhalation can induce neutrophil infiltration of the airways, while eosinophils migrate to the airways in allergic airway inflammation. During a bacterial infection, Th2-associated cytokine IL-4, by binding to the IL-4 receptor (IL-4R), can suppress neutrophil recruitment to the site of inflammation. In the present study, we estimated whether the IL-4-dependent suppression of neutrophil recruitment contributed to the development of an immune response in asthma.

View Article and Find Full Text PDF

Triptolide alleviates allergic airway inflammation by inhibiting group 2 innate lymphoid cell function.

Int Immunopharmacol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Group 2 innate lymphoid cells (ILC2s) produce the type 2 cytokines IL-5 and IL-13 and contribute to type 2 immune responses, such as allergic airway inflammation. However, specific drugs, especially traditional Chinese medicines, that target lung ILC2s have rarely been reported. Here, we demonstrate that triptolide ameliorates allergic airway inflammation by suppressing ILC2 activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!