Human cerebral organoid (hCO) models offer the opportunity to understand fundamental processes underlying human-specific cortical development and pathophysiology in an experimentally tractable system. Although diverse methods to generate brain organoids have been developed, a major challenge has been the production of organoids with reproducible cell type heterogeneity and macroscopic morphology. Here, we have directly addressed this problem by establishing a robust production pipeline to generate morphologically consistent hCOs and achieve a success rate of >80%. These hCOs include both a radial glial stem cell compartment and electrophysiologically competent mature neurons. Moreover, we show using immunofluorescence microscopy and single-cell profiling that individual organoids display reproducible cell type compositions that are conserved upon extended culture. We expect that application of this method will provide new insights into brain development and disease processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167289PMC
http://dx.doi.org/10.26508/lsa.202000707DOI Listing

Publication Analysis

Top Keywords

robust production
8
human cerebral
8
reproducible cell
8
cell type
8
production uniform
4
uniform human
4
organoids
4
cerebral organoids
4
organoids pluripotent
4
pluripotent stem
4

Similar Publications

Mechanically Robust Bismuth-Embedded Carbon Microspheres for Ultrafast Charging and Ultrastable Sodium-Ion Batteries.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China.

Advancements in the development of fast-charging and long-lasting microstructured alloying anodes with high volumetric capacities are essential for enhancing the operational efficiency of sodium-ion batteries (SIBs). These anodes, however, face challenges such as declined cyclability and rate capability, primarily due to mechanical degradation reduced by significant volumetric changes (over 252%) and slow kinetics of sodium-ion storage. Herein, we introduce a novel anode design featuring densely packed bismuth (Bi) embedded within highly conductive carbon microspheres to overcome the aforementioned challenges.

View Article and Find Full Text PDF

A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury.

Acta Pharm Sin B

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.

View Article and Find Full Text PDF

Pretheranostic agents with extraordinaryNIRF/photoacoustic imaging performanceand photothermal oncotherapy efficacy.

Acta Pharm Sin B

December 2024

Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.

Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue.

View Article and Find Full Text PDF

AlgaeSperm: Microalgae-Based Soft Magnetic Microrobots for Targeted Tumor Treatment.

Small

January 2025

School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.

Magnetic microrobots are significant platforms for targeted drug delivery, among which sperm-inspired types have attracted much attention due to their flexible undulation. However, mass production of sperm-like soft magnetic microrobots with high-speed propulsion is still challenging due to the need of more reasonable structure design and facile fabrication. Herein, a novel strategy is proposed for large-scale preparation of microalgae-based soft microrobots with a fully magnetic head-to-tail structure, called AlgaeSperm with robust propulsion and chemo-photothermal performance.

View Article and Find Full Text PDF

The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!