There is a paucity of evidence on the effect that rider asymmetry has on equine locomotion. The aim of this study was to evaluate the effect of rider asymmetry on equine locomotion by using a novel approach to induce rider asymmetry. Ten nonlame horses were recruited for this study. Joint center markers were used to capture 2D kinematics (Quintic Biomechanics) of the horse and rider and horses were equipped with seven inertial sensors positioned at the fifth (T5) and eighteenth (T18) thoracic vertebrae, third lumbar (L3) vertebra, tubera sacrale (TS), and left and right tubera coxae. Rider asymmetry was induced by shortening the ventral aspect of one stirrup by 5 cm. Kinematic data were compared between conditions using a mixed model with the horse defined as a random factor and stirrup condition (symmetrical stirrups and asymmetrical stirrups) and direction (inside and outside) defined as fixed factors. Data from riders where the right stirrup was shortened were mirrored to reflect a left stirrup being shortened. To determine differences between conditions, a significance of P ≤ .05 was set. On the rein with the shortened stirrup on the outside: an increase in lateral bending range of motion (ROM) at T5 (P = .003), L3 (P = .04), and TS (P = .02), an increase in mediolateral displacement at T5 (P = .04), T18 (P = .04), and L3 (0.03) were found. An increase in maximum fetlock extension was apparent for both the front (P = .01) and hind limb (P = .04) on the contralateral side to the shortened stirrup; for the asymmetrical stirrup condition on the rein with the shortened stirrup on the inside: an increase in flexion-extension ROM at T5 (P = .03) and L3 (P = .04), axial rotation at T5 (P = .05), and lateral bending of T5 (P = .03), L3 (P = .04), and TS (P = .02). Asymmetric rider position appears to have an effect on the kinematics of the thoracolumbar spine. These findings warrant further investigation to understand the long-term impact this may have on equine locomotor health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jevs.2020.102946 | DOI Listing |
Animals (Basel)
January 2025
Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, NL-3584 CM Utrecht, The Netherlands.
Prior to international competitions, dressage horses are evaluated for fitness to compete while trotting in hand on a firm surface. This study compares the kinematics of experienced dressage horses trotting under fitness-to-compete conditions vs. performing collected and extended trot when ridden on a sand-fiber arena surface.
View Article and Find Full Text PDFPLoS One
July 2024
Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
A high proportion of horses in training, perceived as free from lameness by their owner, exhibit vertical movement asymmetries. These types of asymmetries are sensitive measures of lameness, but their specificity as indicators of orthopaedic pathology or locomotor function remains unclear. Equine athletes performing at a high level could be assumed to exhibit a higher degree of movement symmetry compared with the general horse population, but this has not been confirmed.
View Article and Find Full Text PDFJ Clin Neurosci
August 2024
Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Street, Suite 1011, St. Louis 63103, MO, USA. Electronic address:
Introduction: Cognitive decline frequently occurs in individuals with Parkinson's disease (PD), but the clinical methods to predict the onset of cognitive changes are limited. Given preliminary evidence of the link between gait and cognition, the purpose of this study was to determine if dual task (DT) gait was related to declines in cognition over two years in PD.
Methods: A retrospective two-year longitudinal study of 48 individuals with PD using data from the Parkinson's Progression Markers Initiative of the Michael J.
Purpose: We determined the effects of shorter affected side (AS) crank arm lengths and cycling with two different prostheses on joint and crank power, asymmetry, and net efficiency.
Methods: Twelve participants with a TTA rode at 1.5 W·kg -1 with equal (175 mm) and shorter AS crank arms (160, 165, 170 mm) using a daily-use prosthesis and CSP.
PeerJ
November 2023
Swedish University of Agricultural Sciences, Department of Animal Environment and Health, Uppsala, Sweden.
Background: Horses commonly show asymmetries that manifest as left (L)-right (R) differences in vertical excursion of axial body segments. Moving on a circle confounds inherent individual asymmetries. Our goals were to evaluate individual and group asymmetry patterns and compare objective data with subjective impressions of side preference/laterality in horses walking on L and R circles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!