Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. In the past years, new therapeutic approaches (e.g., ibrutinib or venetoclax) have been established and greatly improved treatment of CLL. However, complete control or cure of the disease have not been reached so far. Thus, reliable prognostic markers are an imperative for treatment decisions. Recent studies have revealed an essential role for B cell receptor (BCR) signaling in the pathogenesis, prognosis, and therapy of CLL. A heterogeneous response to receptor stimulation with anti-IgM treatment culminating in different calcium flux capabilities has been demonstrated by several authors. However, the methods employed have not reached clinical application. Here, we report on a flow cytometry-based assay to evaluate calcium flux capabilities in CLL and demonstrate that compromised BCR signaling with diminished calcium flux is associated with a significantly better clinical outcome and progression free survival. In summary, our data strongly support the role of compromised BCR signaling as an important prognostic marker in CLL and establish a novel diagnostic tool for its assessment in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/JLB.5TA0320-411RRDOI Listing

Publication Analysis

Top Keywords

bcr signaling
12
calcium flux
12
flow cytometry-based
8
cytometry-based assay
8
cell receptor
8
signaling prognostic
8
chronic lymphocytic
8
lymphocytic leukemia
8
flux capabilities
8
compromised bcr
8

Similar Publications

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes are considered clinically beneficial in breast cancer, but the significance of natural killer (NK) cells is less well characterized. As increasing evidence has demonstrated that the spatial organization of immune cells in tumor microenvironments is a significant parameter for impacting disease progression as well as therapeutic responses, an improved understanding of tumor-infiltrating NK cells and their location within tumor contextures is needed to improve the design of effective NK cell-based therapies. In this study, we developed a multiplex immunohistochemistry (mIHC) antibody panel designed to quantitatively interrogate leukocyte lineages, focusing on NK cells and their phenotypes, in two independent breast cancer patient cohorts (n = 26 and n = 30).

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

BCR::ABL1-like B-lymphoblastic leukaemia (B-ALL) neoplasms lack the BCR::ABL1 translocation but have a gene expression profile like BCR::ABL1 positive B-ALL. This includes alterations in cytokine receptors and signalling genes, such as and Cases with CRLF2 rearrangements account for approximately 50% of cases of Philadelphia-like acute lymphoblastic leukaemia (Ph-like ALL), and the frequency of specific genomic lesions varies with ethnicity such that IGH::CRLF2 translocations are more common in Hispanics and Native Americans.We report two cases of BCR::ABL1-like ALL, with significant eosinophilia.

View Article and Find Full Text PDF

Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!