Hepatitis B, one of the world's most common liver infections, is caused by the Hepatitis B Virus (HBV). Via the infected cells, this virus generates non pathogen particles with similar surface structures as those found in the full virus. These particles are used in a recombinant form (HBsAg) to produce efficient vaccines. The atomic structure of the HBsAg particles is currently unsolved, and the only existing structural data for the full particle were obtained by electronic microscopy with a maximum resolution of 12 Å. As many vaccines, HBsAg is a complex bio-system. This complexity results from numerous sources of heterogeneity, and traditional bio-immuno-chemistry analytic tools are often limited in their ability to fully describe the molecular surface or the particle. For the Hepatitis B vaccine particle (HBsAg), no atomic data are available so far. In this study, we used the principal well-known elements of HBsAg structure to reconstitute and model the full HBsAg particle assembly at a molecular level (protein assembly, particle formation and maturation). Full HBsAg particle atomic models were built based on an exhaustive experimental data review, amino acid sequence analysis, iterative threading modeling, and molecular dynamic approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2020.107610 | DOI Listing |
Elife
January 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna 1060, Austria.
Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, New York University, New York, NY 10003.
Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.
View Article and Find Full Text PDFChemSusChem
January 2025
Osaka University: Osaka Daigaku, Research Center for Solar Energy Chemistry, 1-3 Machikaneyama, Toyonaka, 560-8531, Osaka, JAPAN.
Electrochemically grown copper nanoclusters (CuNCs: < 3 nm) from single-atom catalysts have recently attracted intensive attention as electrocatalysts for CO2 and CO reduction reaction (CO2RR/CORR) because they exhibit distinct product selectivity compared with conventional Cu nanoparticles (typically larger than 10 nm). Herein, we conducted a detailed investigation into the size dependence of CuNCs on selectivity for multicarbon (C2+) production in CORR. These nanoclusters were electrochemically grown from single Cu atoms dispersed on covalent triazine frameworks (Cu-CTFs).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!