Acidity and metallic elements release from AMD-affected river sediments: Effect of AMD standstill and dilution.

Environ Res

The Ministry of Education Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. Electronic address:

Published: July 2020

In acid mine drainage (AMD) polluted rivers, considerable fraction of potential toxic elements are temporarily sequestered by sediments. There are two main potential environmental hazards associated with the sediments, acidity liberation and re-mobilization of metallic elements, during environmental conditions change. The effects of AMD standstill and water dilution on metallic elements migration were assessed in an AMD standstill test and a dialysis experiment. Maintaining AMD standstill, often occurring in AMD damming process, could induce the occurrence of iron secondary minerals precipitation along with attenuation of dissolved elements and a decrease in water pH value. Both field sediments and lab precipitates were confirmed as being dominant with schwertmannite which was the most important source and sink for acidity and metallic elements. The mechanism of cation heavy metals scavenging implied by FTIR results mostly depended on the exchanging of H from surface hydroxyl groups (-OH) in schwertmannite-rich sediments. For arsenic oxyanion, its adsorption included surface complexation with iron hydroxyl groups at the mineral surface, as well as anion exchange of SO present in the structure. The quantities of acidity release differed significantly from 20 to 3714 mol H/t depending on the iron hydroxyl minerals type and their contents in the corresponding sediments in 35 d dialysis, with the release rate well fitted by the second order model. Slight degree of phase transformation in schwertmannite dominant sediment had resulted in a high risk of metallic element release during the 35 d dilution duration. The significant risk of metallic elements release was ranked in the order of Cd > Mn > Zn > Pb, and with more than 89% of Cd released from FS6 and 82% from LPS1. Relatively, Cu and As in sediments were much more stable. Overall, damming was an effective and low cost pretreatment strategy for AMD pollution control. Knowledge of the characteristics of iron secondary minerals in river sediments is essential premise for both comprehensive assessment of site contamination status and effective remediation strategy decision.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109490DOI Listing

Publication Analysis

Top Keywords

metallic elements
20
amd standstill
16
acidity metallic
8
elements release
8
sediments
8
river sediments
8
iron secondary
8
secondary minerals
8
hydroxyl groups
8
iron hydroxyl
8

Similar Publications

Upgrade of Weak σ-hole Bond Donors via Cr(CO)3 Complexation.

Chemistry

January 2025

Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.

Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.

View Article and Find Full Text PDF

Research on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (BiS), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology, structure, and photoresponse of the heterojunction where one element is represented by semitransparent titania nanotubes (gTiNT) and the second is BiS. Using 2-methoxyethanol and methanol during SILAR, results in remarkably photoactive 3D heterostructure and recorded photocurrents were 44 times higher compared to bare titania nanotubes.

View Article and Find Full Text PDF

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!