Remote sensing techniques are effectively used for measuring the overall loss of terrestrial ecosystem productivity and biodiversity due to forest fires. The current research focuses on assessing the impacts of forest fires on terrestrial ecosystem productivity in India during 2003-2017. Spatiotemporal changes of satellite remote sensing derived burn indices were estimated for both fire and normal years to analyze the association between forest fires and ecosystem productivity. Two Light Use Efficiency (LUE) models were used to quantify the terrestrial Net Primary Productivity (NPP) of the forest ecosystem using the open-source and freely available remotely sensed data. A novel approach (delta NPP/delta burn indices) is developed to quantify the effects of forest fires on terrestrial carbon emission and ecosystem production. During 2003-2017, the forest fire intensity was found to be very high (>2000) across the eastern Himalayan hilly region, which is mostly covered by dense forest and thereby highly susceptible to wildfires. Scattered patches of intense forest fires were also detected in the lower Himalayan and central Indian states. The spatial correlation between the burn indices and NPP were mainly negative (-0.01 to -0.89) for the fire-prone states as compared to the other neighbouring regions. Additionally, the linear approximation between the burn indices and NPP showed a positive relation (0.01 to 0.63), suggesting a moderate to high impact of the forest fires on the ecosystem production and terrestrial carbon emission. The present approach has the potential to quantify the loss of ecosystem productivity due to forest fires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138331 | DOI Listing |
Neural Netw
January 2025
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China. Electronic address:
Smoke is a critical indicator of forest fires, often detectable before flames ignite. Accurate smoke identification in remote sensing images is vital for effective forest fire monitoring within Internet of Things (IoT) systems. However, existing detection methods frequently falter in complex real-world scenarios, where variable smoke shapes and sizes, intricate backgrounds, and smoke-like phenomena (e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Environmental Sciences Department, Wageningen University & Research, Wageningen 6708 PB, The Netherlands.
The boreal forest biome is warming four times faster than the global average. Changes so far are moderate, but time lags in responses may transiently maintain forest states which are no longer supported by current environmental conditions. Here, we explore whether tree cover dynamics hint at the state to which the biome may be shifting.
View Article and Find Full Text PDFSci Total Environ
January 2025
Forest Fire Laboratory (LABIF), Forestry Engineering Department, University of Cordoba, 14071 Cordoba, Spain. Electronic address:
Most Mediterranean ecosystems have been profoundly shaped by wildfires, driving the evolution of plant species. Through photo interpretation and field inventories, this research assessed vegetation dynamics from 1984 to 2021, examining how fire severity and recurrence, key fire regime variables, influenced changes in structure and woody species diversity. Using two burn scars (1988 and 2006), we identified four scenarios dominated by Pinus pinea tree species: control (unburned), areas burned once (either in 1988 or 2006), and twice (in both 1988 and 2006).
View Article and Find Full Text PDFScience
January 2025
Valério D. Pillar is at the Laboratório de Ecologia Quantitativa, Departamento de Ecologia/Centro de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Over half of Earth's land surface is covered with fire-prone vegetation, with grassy ecosystems-such as grasslands, savannas, woodlands, and shrublands-being the most extensive. In the context of the climate crisis, scientists worldwide are exploring adaptation measures to address the heightened fire risk driven by more frequent extreme climatic conditions such as droughts and heatwaves, as well as by non-native plant invasions that increased fuel loads and altered fire regimes. Although fire is intrinsic to grassy ecosystems, rising exposure to wildfire smoke harms human health and the environment.
View Article and Find Full Text PDFBMC Public Health
January 2025
Heluna Health, City of Industry, City of Industry, CA, USA.
Background: Prescribed burning is an important fuel management tool to prevent severe wildfires. There is a pressing need to increase its application to reduce dry fuels in the western United States, a region that has experienced many damaging wildfires. Public support for this practice is tempered by concern around smoke impacts and escape risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!