Transformation of catechol coupled to redox alteration of humic acids and the effects of Cu and Fe cations.

Sci Total Environ

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou, China.

Published: July 2020

Humic substances are reactive during redox alteration. However, the role of this reactivity in the transformation of organic compounds and in carbon cycling in the environment is still unclear. Here, we used C-radioactive tracer to study abiotic transformation and humification of catechol, a representative of naturally occurring monomeric phenols and phenolic pollutants, in suspensions of humic acids (HAs) at original and H/Pd-reduced redox states with flux of air (HA-Air and HA-Air, respectively) or N (HA-N and HA-N, respectively) for 20 min in absence and presence of Cu(II) and Fe(II). Both HA and HA can transform catechol in the absence of O to 19% and 25% of the initially applied amount, respectively. The transformation of catechol strongly increased when air was introduced, amounting to 75% in HA-Air treatment and 43% in HA-Air treatment, owing to the generation of reactive oxygen species. Considerable amounts of catecholic carbons were incorporated into HAs (26% for HA-Air and 19% for HA-Air), constituting humification of catechol. The presence of Cu(II) strongly inhibited the overall transformation and humification of catechol, although it significantly increased humification at the start of incubation. The presence of Fe(II) overall enhanced both the transformation and humification. The results provide first insights into the impacts of redox alteration of humic substances together with the presence of metal ions with variable valences on the fate of phenolic compounds in the environment. This study points out that redox alteration-induced abiotic transformation may be one important process for dissipation of phenolic pollutants and humification of phenolic carbons in environments rich in HAs and subject to redox fluctuation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138245DOI Listing

Publication Analysis

Top Keywords

redox alteration
12
transformation humification
12
humification catechol
12
transformation catechol
8
alteration humic
8
humic acids
8
humic substances
8
abiotic transformation
8
phenolic pollutants
8
presence cuii
8

Similar Publications

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.

View Article and Find Full Text PDF

A Droplet Microfluidic Sensor for Point-of-Care Measurement of Plasma/Serum Total Free Thiol Concentrations.

Anal Chem

January 2025

Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.

Total free thiols are an important marker of the whole-body redox state, which has been shown to be associated with clinical outcome in health and disease. Recent investigations have suggested that increased insight may be gained by monitoring alterations of redox state in response to exercise and hypoxia and to monitor redox trajectories in disease settings. However, conducting such studies is challenging due to the requirement for repeated venous blood sampling and intensive lab work.

View Article and Find Full Text PDF

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!