Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
UV light-emitting diodes (UV-LEDs) have emerged as a new technology for water disinfection. Multiwell plates are a common tool in biological research, but they have never been used for UVC/UVB-inactivation experiments of microorganisms. In this study, a novel, rapid and simple UVC/UVB-inactivation assay was developed for a UV-LED system using a multiwell plate setup (96- and 24-well plates). The relative incident irradiance distribution across the exposed area was examined by spectroradiometry and nitrate-nitrite uniformity assay. The two methods showed a good correlation and high distribution factors (>0.89 and >0.94 for 96- and 24-well plates, respectively). In addition, the potential of the new system for determining disinfection efficacy of E. coli and MS2 coliphage by UV-LEDs emitting at central wavelengths of 265 nm and 285 nm was demonstrated. The inactivation rate constants were comparable to those obtained using UV-LED systems with the conventional dish (or beaker) setup, but the multiwell plate method allowed for many more repetitions. The proposed system is an alternative for UV-inactivation dose-response assay, especially when screening assays are desired, since it has the advantage of being fast, comprehensive (with a large number of simultaneous replicates) and easily adapted to various applications as UV-LED based photocatalysis experiments, UV effect on biofilm formation and UV-based AOP degradation experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2020.111865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!