Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme.

Semin Cancer Biol

Department of Stem Cell Research, Institute for Research and Medical consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia. Electronic address:

Published: February 2021

Glioblastoma multiforme (GBM) is the most aggressive (WHO grade IV) form of diffuse glioma endowed with tremendous invasive capacity. The availability of narrow therapeutic choices for GBM management adds to the irony, even the post-treatment median survival time is roughly around 14-16 months. Gene mutations seem to be cardinal to GBM formation, owing to involvement of amplified and mutated receptor tyrosine kinase (RTK)-encoding genes, leading to dysregulation of growth factor signaling pathways. Of-late, the role of different microRNAs (miRNAs) in progression and proliferation of GBM was realized, which lead to their burgeon potential applications for diagnostic and therapeutic purposes. miRNA signatures are intricately linked with onset and progression of GBM. Although, progression of GBM causes significant changes in the BBB to form BBTB, but still efficient passage of cancer therapeutics, including antibodies and miRNAs are prevented, leading to low bioavailability. Recent developments in the nanomedicine field provide novel approaches to manage GBM via efficient and brain targeted delivery of miRNAs either alone or as part of cytotoxic pharmaceutical composition, thereby modulating cell signaling in well predicted manner to promise positive therapeutic outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2020.04.001DOI Listing

Publication Analysis

Top Keywords

targeted delivery
8
glioblastoma multiforme
8
progression gbm
8
gbm
7
delivery mirna
4
mirna based
4
based therapeuticals
4
therapeuticals clinical
4
clinical management
4
management glioblastoma
4

Similar Publications

Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD.

View Article and Find Full Text PDF

Prokinetic agents are drugs used to enhance gastrointestinal motility and treat disorders such as Gastroesophageal Reflux Disease (GERD) and gastroparesis. pH-dependent release systems offer targeted drug delivery, allowing prokinetic agents to be released specifically in desired regions of the gastrointestinal tract. This optimizes drug efficacy and minimizes systemic side effects.

View Article and Find Full Text PDF

An Injectable Multifunctional Nanosweeper Eliminates Cardiac Mitochondrial DNA to Reduce Inflammation.

Adv Healthc Mater

January 2025

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases.

View Article and Find Full Text PDF

Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.

View Article and Find Full Text PDF

The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!