Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia.

Biochim Biophys Acta Mol Cell Res

Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland.

Published: August 2020

A growing body of evidence suggests a role of proteolytic enzymes in the development of diabetic nephropathy. Cathepsin C (CatC) is a well-known regulator of inflammatory responses, but its involvement in podocyte and renal injury remains obscure. We used Zucker rats, a genetic model of metabolic syndrome and insulin resistance, to determine the presence, quantity, and activity of CatC in the urine. In addition to the animal study, we used two cellular models, immortalized human podocytes and primary rat podocytes, to determine mRNA and protein expression levels via RT-PCR, Western blot, and confocal microscopy, and to evaluate CatC activity. The role of CatC was analyzed in CatC-depleted podocytes using siRNA and glycolytic flux parameters were obtained from extracellular acidification rate (ECAR) measurements. In functional analyses, podocyte and glomerular permeability to albumin was determined. We found that podocytes express and secrete CatC, and a hyperglycemic environment increases CatC levels and activity. Both high glucose and non-specific activator of CatC phorbol 12-myristate 13-acetate (PMA) diminished nephrin, cofilin, and GLUT4 levels and induced cytoskeletal rearrangements, increasing albumin permeability in podocytes. These negative effects were completely reversed in CatC-depleted podocytes. Moreover, PMA, but not high glucose, increased glycolytic flux in podocytes. Finally, we demonstrated that CatC expression and activity are increased in the urine of diabetic Zucker rats. We propose a novel mechanism of podocyte injury in diabetes, providing deeper insight into the role of CatC in podocyte biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2020.118723DOI Listing

Publication Analysis

Top Keywords

catc
9
podocyte renal
8
renal injury
8
zucker rats
8
role catc
8
catc-depleted podocytes
8
glycolytic flux
8
high glucose
8
podocytes
7
podocyte
5

Similar Publications

Description and Analysis of Horse Swimming Strategies in a U-Shaped Pool.

Animals (Basel)

January 2025

Laboratoire de BioMécanique et BioIngénierie (UMR CNRS 7338), Centre of Excellence for Human and Animal Movement Biomechanics (CoEMoB), Université de Technologie de Compiègne (UTC), Alliance Sorbonne Université, 60200 Compiègne, France.

Aquatic training has been integrated into equine rehabilitation and training programs for several decades. While the cardiovascular effects of this training have been explored in previous studies, limited research exists on the locomotor patterns exhibited during the swimming cycle. This study aimed to analyze three distinct swimming strategies, identified by veterinarians, based on the propulsion phases of each limb: (S1) two-beat cycle with lateral overlap, (S2) two-beat cycle with diagonal overlap, and (S3) four-beat cycle.

View Article and Find Full Text PDF

Background: Patients with systemic right ventricle (SRV), either d-transposition of the great arteries following an atrial switch procedure or congenitally corrected transposition of the great arteries, develop severe right ventricular dysfunction, prompting appropriate medical therapy. However, the efficacy of beta-blockers and angiotensin receptor blockers or angiotensin-converting enzyme inhibitors (ACEI) in SRV patients is unproven.

Objectives: The objective of this study was to determine the effects of ACEI/ARB and beta-blockers on outcomes in SRV patients after accounting for likely cofounders affecting their use.

View Article and Find Full Text PDF

Adhesive and antibacterial guar gum-based nanocomposite hydrogel for remodeling wound healing microenvironment.

Int J Biol Macromol

December 2024

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China. Electronic address:

Hydrogels are promising wound dressings due to their extracellular matrix-like properties and tunable structure-function characteristics. Besides the physical isolation effect, hydrogel dressings are highly expected to possess tissue-adhesive performance and antibacterial capacity, which are beneficial for their clinical translations. Herein, a guar gum (GG)-based nanocomposite hydrogel was fabricated by mixing methacrylated GG (GGMA), acrylic acid, acrylated 3-aminophenylboronic acid, mangiferin (MF)-loaded cetyltrimethyl ammonium chloride (CTAC) micelles (MF@CTAC) and radical initiator.

View Article and Find Full Text PDF
Article Synopsis
  • * Over a 35-day period, these microbiomes achieved a remarkable 99% reduction of DEHP, with specific bacterial groups identified as key contributors to the degradation process.
  • * In addition, certain bacterial strains, like Gordonia sp. and Gordonia polyisoprenivorans, were found to degrade DEHP by 65-97% within just 7 days, showing potential for broader application in addressing plastic pollution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!