Starting from weakly bound Feshbach molecules, we demonstrate a two-photon pathway to the dipolar ground state of bi-alkali molecules that involves only singlet-to-singlet optical transitions. This pathway eliminates the search for a suitable intermediate state with sufficient singlet-triplet mixing and the exploration of its hyperfine structure, as is typical for pathways starting from triplet dominated Feshbach molecules. By selecting a Feshbach state with a stretched singlet hyperfine component and controlling the laser polarizations, we assure coupling to only single hyperfine components of the A^{1}Σ^{+} excited potential and the X^{1}Σ^{+} rovibrational ground state. In this way an ideal three level system is established, even if the hyperfine structure is not resolved. We demonstrate this pathway with ^{6}Li^{40}K molecules, and discuss its application to other important molecular species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.133203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!