To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-β) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391400 | PMC |
http://dx.doi.org/10.1007/s40259-020-00419-w | DOI Listing |
Parasit Vectors
January 2025
Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, 21040-360, Brazil.
Background: Leishmaniases are neglected tropical diseases with great clinical and epidemiological importance. The current chemotherapy available for the treatment of leishmaniasis presents several problems, such as adverse effects, toxicity, long treatment time, and parasite resistance. The discovery of new therapeutic alternatives is extremely essential, and the discovery of cellular targets is a tool that helps in the development of new drugs.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication.
View Article and Find Full Text PDFPLoS One
January 2025
LP2N, Laboratoire Photonique Numérique et Nanosciences, University Bordeaux, Talence, France.
Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Physics, Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany.
Transition metal complexes are well-known for their efficient light emission and are promising for applications ranging from bioimaging to light-emitting diodes. In solution, interactions between the metal centers of two complexes become possible and drastically change the photophysical properties. For real-world devices, solid-state materials consisting of these molecules are preferable.
View Article and Find Full Text PDFMagn Reson Med Sci
January 2025
Department of Biomedical Engineering, Gachon University, Seongnam, Gyeonggi, Korea.
Purpose: Hyperthermia is a treatment that applies heat to damage or kill cancer cells and can be also used for drug deliveries. It is important to apply the heat into the specific area in order to target the cancer tissue and avoid damaging healthy tissue. For this reason, the development of heat applicators that have the capability to deliver the heat to the target area is vital.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!