To better understand the extent of how the air temperature and mean radiant temperature may vary both spatially and temporally in a radiantly heated space, we conducted a seven-day experiment in the architectural laboratory at School of Architecture, Princeton University. The primary intent of this paper was to decouple the measurement of the air temperature and mean radiant temperature. We collected a large dataset that shows temporal and spatial variations. To do so, we used non-contact infrared thermometer to measure the surface temperatures of the surrounding surfaces inside the laboratory. The geometry of the laboratory is simplified into a box, the corresponding view factor from every point within the box can be calculated towards each internal surface. These view factors are then combined with the measured surface temperatures to produce mean radiant temperatures. This spatial mean radiant temperature distribution was then compared with the air temperature distribution measured by the air temperature sensors suspended from the ceiling of the laboratory. We believe making these data available will help future researchers working on similar problems to develop protocols than the state-of-the-art measurement techniques observed among different thermal comfort or radiant heat transfer research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152696PMC
http://dx.doi.org/10.1016/j.dib.2020.105192DOI Listing

Publication Analysis

Top Keywords

air temperature
20
radiant temperature
16
temperature radiant
12
temperature
8
surface temperatures
8
temperature distribution
8
radiant
6
air
5
laboratory
5
temperature data
4

Similar Publications

Factors influencing spatiotemporal variability of NO concentration in urban area: a GIS and remote sensing-based approach.

Environ Monit Assess

January 2025

Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.

The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Raisins are so popular in the human diet as a nutritional and sweet snack. The quality of this foodstuff depends on drying conditions. To minimize ochratoxin A (OTA) content and yeast and mold content (YMC) in raisins with favorable physicochemical and sensory properties, the response surface methodology (RSM) and the face-centered central composite design (FCCD) were utilized.

View Article and Find Full Text PDF

Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM) and ozone (O) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning.

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!