Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sugarcane ( spp.) is a major sugar crop grown in tropical and sub-tropical areas throughout the world which is vulnerable to high temperature stress due to climate change. In this present study, we have generated a transcriptome profile of sugarcane variety Co 99004 exposed to high-temperature stress (47 C). The Illumina Nexseq2500 platform yielded a total of 39.28 and 13.44 million reads, corresponding to 3.9 and 1.3 gigabase pair (Gb) of the processed reads for control and high-temperature-stressed samples, respectively. Initially, the reads were de novo assembled into 118,017 unigenes with an average length of 780 bp. The longest sequence in the assembly was 21 kb. Further, these transcripts were BLASTed against GO, KEGG and COG databases to identify the novel genes/transcripts expressed due to elevated temperature conditions. The different expression analysis showed 1137 transcripts which were up-regulated during heat temperature stress when compared to control conditions. Analysis of relative gene expression showed phytepsin, ferredoxin-dependent glutamate synthase, and stress protein DDR-48 threefold increased expression during heat stress. These findings reveal novel targets for subsequent research on the genomics genetic manipulation and molecular mechanism of elevated stress tolerance in sugarcane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148410 | PMC |
http://dx.doi.org/10.1007/s13205-020-02170-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!