Obstructive sleep apnea (OSA) results in increased carotid intima-media thickness (IMT) and arterial stiffness; however, the association between adipocytokines and IMT/arterial stiffness in OSA patients is unclear. We enrolled 95 normal weight and overweight, not obese, participants from May 2018 to December 2018 in this study. All subjects underwent a carotid artery ultrasound examination and polysomnography. Blood samples were used to determine serum chemerin, adiponectin, SFRP5, and apelin levels. Correlations between two quantitative variables were assessed using the Pearson or Spearman coefficient. Stepwise models of multiple linear regression analysis were performed to assess the independent relationships. IMT in OSA patients was significantly higher than in the non-snorers. There were significant differences in the arterial stiffness parameters such as distensibility coefficient (DC), compliance coefficient (CC), and pulse wave velocity (PWV). SFRP5 level was lower in OSA patients than in non-snorers. Adiponectin correlated with CC, DC, and PWV among OSA patients; however, the relationship disappeared after a multivariable adjustment. Age was independently associated with all quantitative IMT and stiffness indices. AHI and minimum oxygen saturation (Mini SaO) were independently related to arterial stiffness. The quantitative IMT and carotid arterial elasticity were significantly worse among OSA patients. Age was the main independent factor correlated with quantitative IMT and arterial stiffness, and AHI and mini SaO were associated factors. There were no relationships between aforementioned adipocytokines and quantitative IMT/carotid arterial stiffness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142226PMC
http://dx.doi.org/10.3389/fendo.2020.00177DOI Listing

Publication Analysis

Top Keywords

arterial stiffness
24
osa patients
20
quantitative imt
12
association adipocytokines
8
stiffness
8
obstructive sleep
8
sleep apnea
8
imt arterial
8
mini sao
8
arterial
7

Similar Publications

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

Background: Stiffening of the large arteries is a hallmark feature of vascular aging and is associated with cognitive impairment and Alzheimer's disease pathology. Increased large artery stiffness leads to higher-than-normal pulse pressure in the cerebral circulation, damaging endothelial cells. It is known that short-term exposure to stiffer large arteries causes cerebral artery endothelial dysfunction and hypoperfusion in young mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: In humans, larger artery stiffening is associated with increased tau phosphorylation and neurodegeneration. However, because arterial stiffness often co-occurs with other age-related conditions like hypertension, atherosclerosis, and diabetes, it is nearly impossible to distill the underlying mechanisms specifically linking arterial stiffening to abnormal brain function. We leveraged a surgical mouse model of larger artery stiffening and used it concurrently with a transgenic Alzheimer's disease (AD) mouse model of tau pathology to investigate the impact of larger artery stiffening on cognition.

View Article and Find Full Text PDF

Background: Elevated arterial pulse pressure (PP) is associated with cognitive decline and Alzheimer's disease (AD). High PP damages the brain vasculature by causing endothelial cell dysfunction. Stiffer cerebral arteries have an impaired ability to dampen PP, which transmits the pulsatility further into the microvasculature, where it can damage brain tissue.

View Article and Find Full Text PDF

Background: Early vascular aging (EVA), manifesting as increases in central arterial stiffness and BP, is associated with cognitive impairment in humans. EVA and cognitive impairment occurs in Dahl salt-sensitive (DSS) rats consuming a normal salt (NS) diet with an advancing age. Quercetin (QRC), a flavonoid with anti-oxidant, anti-inflammatory and senolytic properties, previously shown to reduce salt-sensitive hypertension in DSS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!