AI Article Synopsis

Article Abstract

In this paper, we study the effect of restoration force caused by the limited size of a small metallic nanoparticle (MNP) on its linear response to the electric field of incident light. In a semi-classical phenomenological Drude-like model for small MNP, we consider restoration force caused by the displacement of conduction electrons with respect to the ionic positive background taking into account a free coefficient as a function of diameter of nanoparticle (NP) in the force term obtained by the idealistic Thomson model in order to adjust the classical approach. All important mechanisms of the energy dissipation such as electron-electron, electron-phonon and electron-NP surface scatterings and radiation are included in the model. In addition a correction term added to the damping factor of mentioned mechanisms in order to rectify the deficiencies of theoretical approaches. For determining the free parameters of model, the experimental data of extinction cross section of gold NPs with different sizes doped in the glass host medium are used and a good agreement between experimental data and results of our model is observed. It is shown that by decreasing the diameter of NP, the restoration force becomes larger and classical confinement effect becomes more dominant in the interaction. According to experimental data, the best fitted parameter for the coefficient of restoration force is a third order negative powers function of diameter. The fitted function for the correction damping factor is proportional to the inverse squared wavelength and third order power series of NP diameter. Based on the model parameters, the real and imaginary parts of permittivity for different sizes of gold NPs are presented and it is seen that the imaginary part is more sensitive to the diameter variations. Increase in the NP diameter causes increase in the real part of permittivity (which is negative) and decrease in the imaginary part.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162930PMC
http://dx.doi.org/10.1038/s41598-020-63066-9DOI Listing

Publication Analysis

Top Keywords

restoration force
16
experimental data
12
model small
8
classical confinement
8
force caused
8
function diameter
8
damping factor
8
gold nps
8
third order
8
model
7

Similar Publications

Background: Bite force is one of the important factors that determine the chewing efficiency of molars. This study aimed to investigate the relationship of the maximum bite force (MBF) to the 3-dimensional (3D) arrangement of the first mandibular molars in Angle's class I healthy adults using a digital protocol.

Material And Methods: Subjects were 33 adults (16 males and 17 females) aged 18-25, with Angle's class I occlusions and healthy dentitions.

View Article and Find Full Text PDF

Objective: This in vitro study aimed to investigate the effect of five polishing systems on the surface roughness (SR) and color change (CC) of novel bulk-fill composite resins.

Methods: Fifty composite resin samples were prepared for each of the five groups: Stark Bulk Fill, SDR Plus, SonicFill 3, Charisma Bulk Flow One, and Filtek Z250. Each group of composite resins was further subdivided into five subgroups based on the polishing method applied: OptraGloss (OG), OptraGloss combined with Diapolisher paste (OG), OptiDisc (OD), OptiDisc combined with Diapolisher paste (OD), and Occlubrush (OCC) (n = 10).

View Article and Find Full Text PDF

While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviors, less is known about the circuits that amplify motoneuron output to adjust muscle force. Here, we demonstrate that propriospinal V3 neurons (Sim1) account for ∼20% of excitatory input to motoneurons across hindlimb muscles. V3 neurons also form extensive connections among themselves and with other excitatory premotor neurons, such as V2a neurons.

View Article and Find Full Text PDF

Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR).

View Article and Find Full Text PDF

Rocky desertification (RD) is a severe phenomenon in karst areas, often referred to as "ecological cancer." However, studies on RD rarely include comparative analysis of different man-land relationship areas. This lack of analysis leads to difficulties in preventing and controlling RD in local areas with complex man-land relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!