Actuation remains a significant challenge in soft robotics. Actuation by light has important advantages: Objects can be actuated from a distance, distinct frequencies can be used to actuate and control distinct modes with minimal interference, and significant power can be transmitted over long distances through corrosion-free, lightweight fiber optic cables. Photochemical processes that directly convert photons to configurational changes are particularly attractive for actuation. Various works have reported light-induced actuation with liquid crystal elastomers combined with azobenzene photochromes. We present a simple modeling framework and a series of examples that study actuation by light. Of particular interest is the generation of cyclic or periodic motion under steady illumination. We show that this emerges as a result of a coupling between light absorption and deformation. As the structure absorbs light and deforms, the conditions of illumination change, and this, in turn, changes the nature of further deformation. This coupling can be exploited in either closed structures or with structural instabilities to generate cyclic motion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211941 | PMC |
http://dx.doi.org/10.1073/pnas.1915374117 | DOI Listing |
Nat Mater
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
Mater Horiz
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Recent efforts have focused on developing stimuli-responsive soft actuators that mimic the adaptive, complex, and reversible movements found in natural species. However, most hydrogel actuators are limited by their inability to combine wavelength-selectivity with reprogrammable shape changes, thereby reducing their degree of freedom in motion. To address this challenge, we present a novel strategy that integrates these capabilities by grafting fluorophores onto temperature-responsive hydrogels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
Effective heat management is critical for improving energy efficiency and minimizing environmental impact. Passive radiative heat management systems rely on specific materials and design configurations to naturally modulate temperature, enhance system reliability, and decrease operational costs by modulating infrared light. However, their static nature proves insufficient in dynamic settings experiencing significant temperature fluctuations.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, P.O. Box 541, FI-33101, Finland.
As biomimicry advances, liquid crystal elastomers (LCEs) are gaining attention for their (multi-)stimuli-responsiveness and reversible shape morphing. Introduction of dynamic bonds into the LCEs provides versatile means towards programmable shape morphing and adaptation to environmental cues, and new designs for dynamic LCEs are actively sought for. Here, we present a supramolecular LCE that integrates shape memory programming, humidity sensitivity, and photochemical actuation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic.
Bacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFeO (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!