Background And Objectives: Actionable genetic findings have implications for care of patients with kidney disease, and genetic testing is an emerging tool in nephrology practice. However, there are scarce data regarding best practices for return of results and clinical application of actionable genetic findings for kidney patients.
Design, Setting, Participants, & Measurements: We developed a return of results workflow in collaborations with clinicians for the retrospective recontact of adult nephrology patients who had been recruited into a biobank research study for exome sequencing and were identified to have medically actionable genetic findings.
Results: Using this workflow, we attempted to recontact a diverse pilot cohort of 104 nephrology research participants with actionable genetic findings, encompassing 34 different monogenic etiologies of nephropathy and five single-gene disorders recommended by the American College of Medical Genetics and Genomics for return as medically actionable secondary findings. We successfully recontacted 64 (62%) participants and returned results to 41 (39%) individuals. In each case, the genetic diagnosis had meaningful implications for the patients' nephrology care. Through implementation efforts and qualitative interviews with providers, we identified over 20 key challenges associated with returning results to study participants, and found that physician knowledge gaps in genomics was a recurrent theme. We iteratively addressed these challenges to yield an optimized workflow, which included standardized consultation notes with tailored management recommendations, monthly educational conferences on core topics in genomics, and a curated list of expert clinicians for patients requiring extranephrologic referrals.
Conclusions: Developing the infrastructure to support return of genetic results in nephrology was resource-intensive, but presented potential opportunities for improving patient care.
Podcast: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_04_16_12481019.mp3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269209 | PMC |
http://dx.doi.org/10.2215/CJN.12481019 | DOI Listing |
Cancer Immunol Immunother
January 2025
Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Histiocytic sarcoma (HS) is a rare yet lethal malignancy with no established standard of care therapies. A lack of pre-clinical models limits our understanding of HS pathogenesis and identification of therapeutic targets. Canine HS shares multiple clinical and genetic similarities with human HS, supporting its use as a unique translational model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Duke University School of Medicine, Durham, NC, USA.
Background: Patients with Alzheimer's Disease (AD) frequently manifest comorbid neuropsychiatric symptoms (NPS) with depression and anxiety being most prevalent. Previously we identified shared genetic risk loci between AD and major depressive disorder (MDD). In another study, we constructed a polygenic risk score (PRS) based on MDD-GWAS data and demonstrated its performance in predicting depression onset in LOAD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
1501 NW 10th Avenue, Miami, FL, USA.
Background: Polygenic Risk Scores (PRS) are important in predicting disease risk and are usually rely on markers selected by thresholding p-values from genome-wide association studies (GWAS). In traditional approaches, one single model is built to calculate risk scores, employing effect size to determine additive risk. However, this traditional method overlooks potential interactions between genetic loci resulting in reduced prediction power.
View Article and Find Full Text PDFClin Chem
January 2025
Departments of Biomedical Data Science, Medicine (BMIR) & Genetics, Stanford University, Stanford, CA, United States.
Pharmacogenomics (PGx) is focused on the relationship between an individual's genetic makeup and their response to medications, with the overarching aim of guiding prescribing decisions to improve drug efficacy and reduce adverse events. The PGx and genomic medicine communities have worked independently for over 2 decades, developing separate standards and terminology, making implementation of PGx across all areas of genomic medicine difficult. To address this issue, the Clinical Genome Resource (ClinGen) Pharmacogenomics Working Group (PGxWG) was established by the National Institutes of Health (NIH)-funded ClinGen to initially create frameworks for evaluating gene-drug response clinical validity and actionability aligned with the ClinGen frameworks for evaluating monogenic gene-disease relationships, and a framework for classifying germline PGx variants similar to the American College of Medical Genetics (ACMG) and Association of Molecular Pathology (AMP) system for interpretation of disease-causing variants.
View Article and Find Full Text PDFSkinmed
January 2025
Division of Dermatology, UCLA Medical Center, Los Angeles, CA.
A relative paucity of published papers is observed regarding racial and ethnic disparities in cutaneous T cell lymphoma (CTCL). Although CTCL is a rare condition, the poor outcomes associated with this condition underscore the need to understand and address any existing care inequities. Recently, a growing body of literature has attempted to identify racial disparities in CTCL in terms of the overall survival, stage at presentation, time to initiate treatment, and complication rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!