Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Decontamination of oil spills from coastal wetland soils requires a delicate approach. A microcosm study was carried out to investigate the impact of integrated application of biochar, rhamnolipid (RL) biosurfactant and nitrogen (N) on petroleum hydrocarbon remediation in a Louisiana coastal saline marsh and their impact on soil microbial community. The soil was artificially contaminated with crude oil and subjected to treatments of different combinations of sugarcane residue biochar, RL, and coated urea. Total petroleum hydrocarbons (TPH) in the contaminated soil were analyzed periodically using gas chromatograph and associated soil bacterial community was studied using 16 s rRNA sequencing technologies. Results showed that integrated application of biochar + RL, biochar + N, and biochar + N+RL reduced 32.3%, 73.2%, 80.9% of TPH, respectively, and exhibited synergic interaction with higher efficiency than application individually. Combined treatments showed distinct functions that biochar increased the sorption of aromatic compounds, while RL and N enhanced the degradation of heavy and light aliphatic compounds. All remediation treatments caused reduction of soil bacterial diversity while RL and N shifted the microbial community to higher abundances of Proteobacteria and Bacteroidetes, respectively. Overall, the findings of this study demonstrate the positivity of applying integrated biochar, biosurfactant, and N treatment in oil remediation in wetland soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.122595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!