The SARS-CoV-2 coronavirus (COVID-19) pandemic has significantly impacted the delivery of cellular therapeutics, including chimeric antigen receptor (CAR) T cells. This impact has extended beyond patient care to include logistics, administration, and distribution of increasingly limited health care resources. Based on the collective experience of the CAR T-cell Consortium investigators, we review and address several questions and concerns regarding cellular therapy administration in the setting of COVID-19 and make general recommendations to address these issues. Specifically, we address (1) necessary resources for safe administration of cell therapies; (2) determinants of cell therapy utilization; (3) selection among patients with B cell non-Hodgkin lymphomas and B cell acute lymphoblastic leukemia; (4) supportive measures during cell therapy administration; (5) use and prioritization of tocilizumab; and (6) collaborative care with referring physicians. These recommendations were carefully formulated with the understanding that resource allocation is of the utmost importance, and that the decision to proceed with CAR T cell therapy will require extensive discussion of potential risks and benefits. Although these recommendations are fluid, at this time it is our opinion that the COVID-19 pandemic should not serve as reason to defer CAR T cell therapy for patients truly in need of a potentially curative therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194685PMC
http://dx.doi.org/10.1016/j.bbmt.2020.04.008DOI Listing

Publication Analysis

Top Keywords

cell therapy
20
covid-19 pandemic
12
chimeric antigen
8
antigen receptor
8
cell
8
therapy administration
8
car cell
8
therapy
7
receptor cell
4
covid-19
4

Similar Publications

Smart Cell Therapy: an industry perspective on macrophages as living drugs.

Cytotherapy

December 2024

Barcia Novel Therapies, Lexington, Massachusetts, USA. Electronic address:

Macrophage-based cell therapies represent a cutting-edge frontier in immunotherapy, offering distinct advantages over conventional approaches like CAR-T. This review explores the potential of macrophages to orchestrate both innate and adaptive immune responses, enhancing the body's ability to combat diseases locally and systemically. Dubbed a "Smart Cell Therapy," macrophages can initiate and coordinate complex immunological cascades, leveraging multiple immune system components while also performing effector functions.

View Article and Find Full Text PDF

Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of extranodal non-Hodgkin's lymphomas characterised by a cutaneous infiltration of malignant monoclonal T lymphocytes. While this broad spectrum of disease with its varied etiopathogenesis, clinical features and management options are well characterised, an approach from a dermatologist's perspective is lacking in the literature. We strive to elucidate the approach from a clinician's point of view, especially in respect of clinical examination, investigations, staging and management options that are available in the realm of the dermatologists.

View Article and Find Full Text PDF

The study was designed to appraise the effects of early antibiotic administration on reproductive tract infections and fetal membrane cell scorching in instances of premature rupture of membranes (PROM). A total of 107 pregnant women diagnosed with PROM between July 2020 and June 2022 were randomly assigned to two groups: the Intervention (n=54), where ampicillin were administered within 24 hours of PROM onset, and the control group (n=53), where ampicillin were given 24-48 hours after PROM. Maternal and neonatal outcomes, incidence of reproductive tract infections, and fetal membrane cell scorching indicators (Caspase-1, Caspase -3, Caspase-9 and IL-β) were compared.

View Article and Find Full Text PDF

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!