Background: Compared with all-atom molecular dynamics (MD), constrained MD methods allow for larger time steps, potentially reducing computational cost. For this reason, there has been continued interest in improving constrained MD algorithms to increase configuration space sampling in molecular simulations.
Methods: Here, we introduce Robosample, a software package that implements high-performance constrained dynamics algorithms, originally developed for robotics, and applies them to simulations of biomolecular systems. As in the gMolmodel package developed by Spiridon and Minh in 2017, Robosample uses Constrained Dynamics Hamiltonian Monte Carlo (CDHMC) as a Gibbs sampling move - a type of Monte Carlo move where a subset of coordinates is allowed to change. In addition to the previously described Cartesian and torsional dynamics moves, Robosample implements spherical and cylindrical joints that can be distributed along the molecule by the user.
Results: In alanine dipeptide simulations, the free energy surface is recovered by mixing fully flexible with torsional, cylindrical, or spherical dynamics moves. Ramachandran dynamics, where only the two key torsions are mobile, accelerate the slowest transition by an order of magnitude. We also show that simulations of a complex glycan cover significantly larger regions of the configuration space when mixed with constrained dynamics.
Major Conclusions: Robosample is a tool of choice for efficient conformational sampling of large biomolecules.
General Significance: Robosample is intended as a reliable and user-friendly simulation package for fast biomolecular sampling that does not require extensive expertise in mechanical engineering or in the statistical mechanics of reduced coordinates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2020.129616 | DOI Listing |
Sci Rep
January 2025
Department of Electronics Engineering, College of Engineering, Chang Gung University, Taoyuan City, 330, Taiwan.
Reconfigurable modular robots can be used in application domains such as exploration, logistics, and outer space. The robots should be able to assemble and work as a single entity to perform a task that requires high throughput. Selecting an optimum assembly position with minimum distance traveled by robots in an obstacle surrounding the environment is challenging.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Centre National de la Recherche Scientifique, LPSC, 53 avenue des Martyrs, Grenoble, 38026, FRANCE.
This study aims to determine the optimal structure of the Beam Shaping Assembly (BSA) for an AB-BNCT (Accelerator-Based Boron Neutron Capture Therapy) facility. The aim is to maximize the possible depth of treatment for glioblastoma while ensuring that a treatment time constraint is not exceeded. Approach.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Mathematics, University College London, London, UK.
In this work we analytically investigate the alignment mechanism of self-propelled ellipse-shaped cells in two spatial dimensions interacting via overlap avoidance. By considering a two-cell system and imposing certain symmetries, we obtain an analytically tractable dynamical system, which we mathematically analyse in detail. We find that for elongated cells there is a half-stable steady state corresponding to perfect alignment between the cells.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CNRS, ENS de Lyon, LPENSL, UMR5672, 69342, Lyon cedex 07, France.
Knitted fabrics are metamaterials with remarkable mechanical properties, such as extreme deformability and multiple history-dependent rest shapes. This Letter shows that those properties may stem from a continuous set of metastable states for a fabric free of external forces. This is evidenced through experiments, numerical simulations, and analytical developments.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!