This paper presented how to establish a clinically relevant specification (CRS) using in silico physiologically based pharmacokinetic (PBPK) modeling. Three different formulations of model drug products were used in the clinical studies in order to distinguish between bioequivalent (BE) batches from non-BE batches. A human PBPK model was constructed by integrating the clinical and non-clinical observations by using GastroPlus software. The developed model was verified by the comparison between human PK behavior observed in clinical studies and human PK behavior predicted from the software. The simulation results were obtained by using the dissolution profiles showing clinically relevant discriminatory power as input variables for the developed PBPK model. For three investigated formulations, the simulated PK behavior was comparable to the PK behavior observed in clinical studies. In addition, in silico BE simulation studies confirmed that the verified PBPK model can successfully reproduce the clinical study results. In conclusion, a CRS was established with the BE simulation by using the verified PBPK model, in order to detect and reject non-BE batches of drug products. The establishment of the CRS is useful for a quality control and finding optimal formulation to accomplish target PK behavior, safety, and efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2020.03.012DOI Listing

Publication Analysis

Top Keywords

pbpk model
16
clinically relevant
12
clinical studies
12
relevant specification
8
physiologically based
8
based pharmacokinetic
8
pharmacokinetic pbpk
8
pbpk modeling
8
drug products
8
non-be batches
8

Similar Publications

Background: Cefotaxime is a widely prescribed cephalosporin antibiotic used to treat various infections. It is mainly eliminated unchanged by the kidney through tubular secretion and glomerular filtration. Therefore, a reduction of kidney function may increase exposure to the drug and induce toxic side effects.

View Article and Find Full Text PDF

Gliclazide is a sulfonylurea hypoglycemic agent used to treat type 2 diabetes. Cytochrome P450 (CYP) 2C9 and CYP2C19 are primarily involved in the hepatic metabolism of gliclazide. The two CYP isozymes are highly polymorphic, and their genetic polymorphisms are known to significantly impact the pharmacokinetics of gliclazide.

View Article and Find Full Text PDF

Background: Delirium is a severe neuropsychiatric disorder associated with increased morbidity and mortality. Numerous precipitating factors and etiologies merge into the pathophysiology of this condition which can be marked by agitation and psychosis. Judicious use of antipsychotic medications such as intravenous haloperidol reduces these symptoms and distress in critically ill individuals.

View Article and Find Full Text PDF

Physiologically Based Pharmacokinetic (PBPK) Models are routinely used in drug development and therefore appear frequently in marketing authorization applications (MAAs) to the European Medicines Agency (EMA). For a model to be a key source of evidence for a regulatory decision, it must be considered qualified for the intended use. Advice on the data expected to allow qualification of a PBPK model or platform is provided in the EMA Guideline on the reporting of PBPK modeling and simulation.

View Article and Find Full Text PDF

The two most extensively studied cannabinoids, cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), are used for myriad conditions. THC is predominantly eliminated via the cytochromes P450 (CYPs), whereas CBD is eliminated through both CYPs and UDP-glucuronosyltransferases (UGTs). The fractional contributions of these enzymes to cannabinoid metabolism have shown conflicting results among studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!