Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: Rapamycin is a potent immunosuppressant and anti-proliferative agent used clinically to prevent organ transplant rejection and for coating coronary stents to counteract restenosis. Rapamycin complexes with the immunophilin FKBP12, which subsequently binds and inhibits mTORC1. Despite several reports demonstrating that rapamycin affects platelet-mediated responses, the underlying mechanism of how it alters platelet function is poorly characterised. This study aimed to elucidate the effect of rapamycin on platelet procoagulant responses.
Experimental Approach: The effect of rapamycin on platelet activation and signalling was investigated alongside the catalytic mTOR inhibitors KU0063794 and WYE-687, and the FKBP12-binding macrolide FK506.
Key Results: Rapamycin affects platelet procoagulant responses by reducing externalisation of the procoagulant phospholipid phosphatidylserine, formation of balloon-like structures and local generation of thrombin. Catalytic mTOR kinase inhibitors did not alter platelet procoagulant processes, despite having a similar effect as rapamycin on Ca signalling, demonstrating that the effect of rapamycin on procoagulant responses is independent of mTORC1 inhibition and not linked to a reduction in Ca signalling. FK506, which also forms a complex with FKBP12 but does not target mTOR, reduced platelet procoagulant responses to a similar extent as rapamycin. Both rapamycin and FK506 prevented the loss of mitochondria integrity induced by platelet activation, one of the central regulatory events leading to PS externalisation.
Conclusions And Implications: Rapamycin suppresses platelet procoagulant responses by protecting mitochondrial integrity in a manner independent of mTORC1 inhibition. Rapamycin and other drugs targeting FKBP immunophilins could aid the development of novel complementary anti-platelet therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2020.113975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!