Two different members of the fatty acid-binding protein (FABP) family are found in enterocyte cells of the gastrointestinal system, namely liver-type and intestinal fatty acid-binding proteins (LFABP and IFABP, also called FABP1 and FABP2, respectively). Striking phenotypic differences have been observed in knockout mice for either protein, for example, high fat-fed IFABP-null mice remained lean, whereas LFABP-null mice were obese, correlating with differences in food intake. This finding prompted us to investigate the role each protein plays in directing the specificity of binding to ligands involved in appetite regulation, such as fatty acid ethanolamides and related endocannabinoids. We determined the binding affinities for nine structurally related ligands using a fluorescence competition assay, revealing tighter binding to IFABP than LFABP for all ligands tested. We found that the head group of the ligand had more impact on binding affinity than the alkyl chain, with the strongest binding observed for the carboxyl group, followed by the amide, and then the glycerol ester. These trends were confirmed using two-dimensional H- N nuclear magnetic resonance (NMR) to monitor chemical shift perturbation of the protein backbone resonances upon titration with ligand. Interestingly, the NMR data revealed that different residues of IFABP were involved in the coordination of endocannabinoids than those implicated for fatty acids, whereas the same residues of LFABP were involved for both classes of ligand. In addition, we identified residues that are uniquely affected by binding of all types of ligand to IFABP, suggesting a rationale for its tighter binding affinity compared with LFABP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7314394PMC
http://dx.doi.org/10.1002/pro.3875DOI Listing

Publication Analysis

Top Keywords

fatty acid-binding
12
acid-binding proteins
8
tighter binding
8
binding affinity
8
binding
7
fatty
5
proteins expressed
4
expressed intestine
4
intestine interact
4
interact differently
4

Similar Publications

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

Feeding Preferences and Salivary Protein Profiles of on Species.

J Agric Food Chem

January 2025

National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The invasion of the fall armyworm poses substantial threats to local agricultural safety, including the sugarcane industry. Exploring the insect-resistance mechanism is crucial for breeding resistant varieties. This study selected three representative materials from the genus─ L.

View Article and Find Full Text PDF

Potential-resolved electrochemiluminescent immunoassay based on dual co-reactants regulation.

Biosens Bioelectron

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:

Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.

View Article and Find Full Text PDF

Evaluation of Intestinal Permeability Using Serum Biomarkers in Learning Early About Peanut Allergy Trial.

Allergy

January 2025

Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA.

Background: Intestinal barrier dysfunction may lead to a break in tolerance and development of food allergy (FA). There is contradictory evidence on whether intestinal permeability (IP) is altered in IgE-mediated FA. Thus, we sought to determine whether IP differed between children with eczema who did (FA group) or did not (atopic controls, ACs) develop FA and whether peanut sensitization, allergy, and early introduction impacted IP using serum biomarkers zonulin, soluble CD14, and Intestinal Fatty Acid Binding Protein among randomly selected participants enrolled in the Learning Early About Peanut allergy trial.

View Article and Find Full Text PDF

Background/objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high fat (HF) fed LFABP knockout (LFABP ) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. LFABP is expressed in both liver and intestine, thus in the present study, LFABP conditional knockout (cKO) mice were generated to determine the contributions of LFABP specifically within the liver or the intestine to the whole body phenotype of the global knockout.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!