The WST-1 assay is the most common test to assess the in vitro cytotoxicity of chemicals. Tetrazolium-based assays can, however, be affected by the interference of tested chemicals, including carbon nanotubes or Mg particles. Here, we report a new interference of Mn materials with the WST-1 assay. Endothelial cells exposed to Mn particles (Mn alone or Fe-Mn alloy from 50 to 1600 μg/ml) were severely damaged according to the WST-1 assay, but not the ATP content assay. Subsequent experiments revealed that Mn particles interfere with the reduction of the tetrazolium salt to formazan. Therefore, the WST-1 assay is not suitable to evaluate the in vitro cytotoxicity of Mn-containing materials, and luminescence-based assays such as CellTiter-Glo® appear more appropriate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161962 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231634 | PLOS |
J Biophotonics
January 2025
Faculty of Medicine, Department of Biophysics, Yuksek Ihtisas University, Ankara, Türkiye.
Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0-100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results.
View Article and Find Full Text PDFTurk J Pharm Sci
January 2025
Yeditepe University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul, Türkiye.
Objectives: The chemotherapeutic drug doxorubicin (DOX) affects not only cancer cells but also healthy cells in an undesirable manner. The purpose of this study was to investigate the protective roles of rosmarinic acid (RA) and Epigallocatechin gallate (EGCG) alone and in combination against DOX-induced oxidative stress, cytotoxicity, and genotoxicity in healthy cells. In addition, this study evaluated the expression of the mammalian target of rapamycin (mTOR) protein in the Chinese hamster ovary cell line (CHO-K1).
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Faculty of Science, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
The aim of this study was to assess the critical quality attributes of parenteral nanoemulsion formulations by measuring several physicochemical parameters and linking them to their in vitro performance, illustrating how simplistic and routinely used approaches are insufficient for understanding a potential nanomedicine. Physicochemical characterization should encompass size and size distribution through at least two orthogonal techniques, such as dynamic light scattering (DLS) and electron microscopy, with added value from analytical ultracentrifugation. In vitro toxicity assessment was performed using three different assays to determine mitochondrial activity (WST-1), membrane integrity (lactate dehydrogenase release (LDH) assay), and cell viability (propidium iodide (PI) staining).
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA.
Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.
View Article and Find Full Text PDFCells
December 2024
Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria.
Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!