AI Article Synopsis

  • Doxorubicin (Dox) significantly impacts the aggregation and localization of the histones H2A and H2B, revealing distinct behaviors for each histone.
  • In Jurkat leukemia cells, Dox causes H2B to accumulate in the cytoplasm while H2A shows notable aggregation within the nuclei, detectable through advanced microscopy techniques.
  • The movement of H2B from the nucleus to the cytoplasm is not influenced by common biochemical inhibitors, but is fully blocked by PYR-41, which may imply that Dox's effects could enhance its cancer-fighting properties while also potentially leading to adverse side effects.

Article Abstract

We observed prominent effects of doxorubicin (Dox), an anthracycline widely used in anti-cancer therapy, on the aggregation and intracellular distribution of both partners of the H2A-H2B dimer, with marked differences between the two histones. Histone aggregation, assessed by Laser Scanning Cytometry via the retention of the aggregates in isolated nuclei, was observed in the case of H2A. The dominant effect of the anthracycline on H2B was its massive accumulation in the cytoplasm of the Jurkat leukemia cells concomitant with its disappearance from the nuclei, detected by confocal microscopy and mass spectrometry. A similar effect of the anthracycline was observed in primary human lymphoid cells, and also in monocyte-derived dendritic cells that harbor an unusually high amount of H2B in their cytoplasm even in the absence of Dox treatment. The nucleo-cytoplasmic translocation of H2B was not affected by inhibitors of major biochemical pathways or the nuclear export inhibitor leptomycin B, but it was completely diminished by PYR-41, an inhibitor with pleiotropic effects on protein degradation pathways. Dox and PYR-41 acted synergistically according to isobologram analyses of cytotoxicity. These large-scale effects were detected already at Dox concentrations that may be reached in the typical clinical settings, therefore they can contribute both to the anti-cancer mechanism and to the side-effects of this anthracycline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162453PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231223PLOS

Publication Analysis

Top Keywords

doxorubicin induces
4
induces large-scale
4
large-scale differential
4
differential h2a
4
h2b
4
h2a h2b
4
h2b redistribution
4
redistribution live
4
cells
4
live cells
4

Similar Publications

Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.

View Article and Find Full Text PDF

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Alterations in the gut microbiome and metabolism with doxorubicin-induced heart failure severity.

Front Microbiol

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Objective: This study aimed to explore the changes in gut microbiota and its metabolites in different pathophysiological stages of doxorubicin (DOX)-induced heart failure (DIHF) and the relationship between gut microbiota and metabolites in various degrees of DIHF.

Materials And Methods: C57BL/6 J mice were injected intraperitoneally with 5 mg/kg of DOX once a week for 5 consecutive weeks. At different times after injection, the cardiac function and histopathological analysis was conducted, the serum levels of creatine kinase (CK), CK-MB, lactic dehydrogenase, and cardiac troponin T were determined.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a worldwide public health problem. Podocyte damage is a hallmark of glomerular diseases including focal segmental glomerulosclerosis (FSGS) and one of the leading causes of CKD. Lysine methylation is a crucial post-translational modification.

View Article and Find Full Text PDF

Chemotherapy-induced cellular senescence promotes stemness of aggressive B-cell non-Hodgkin's lymphoma via CCR7/ARHGAP18/IKBα signaling activation.

J Immunother Cancer

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance.

Methods: This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!