Antibacterial drug resistance is a rapidly growing clinical threat, partially due to expression of β-lactamase enzymes, which confer resistance to bacteria by hydrolyzing and inactivating β-lactam antibiotics. The increasing prevalence of metallo-β-lactamases poses a unique challenge, as currently available β-lactamase inhibitors target the active site of serine β-lactamases but are ineffective against the zinc-containing active sites of metallo-β-lactamases. There is an urgent need for metallo-β-lactamase inhibitors and antibiotics that circumvent resistance mediated by metallo-β-lactamases in order to extend the utility of existing β-lactam antibiotics for treating infection. Here we investigated the antibacterial chelator-releasing prodrug PcephPT (2-((((6,7)-2-carboxy-8-oxo-7-(2-phenylacetamido)-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl)methyl)thio) pyridine 1-oxide) as an inhibitor of New Delhi metallo-β-lactamase 1 (NDM-1). PcephPT is an experimental compound that we have previously shown inhibits growth of β-lactamase-expressing using a mechanism that is dependent on both copper availability and β-lactamase expression. Here, we found that PcephPT, in addition to being a copper-dependent antibacterial compound, inhibits hydrolysis activity of purified NDM-1with an IC of 7.6 μM without removing zinc from the active site and restores activity of the carbapenem antibiotic meropenem against NDM-1-producing . This work demonstrates that targeting a metal-binding pharmacophore to β-lactamase-producing bacteria is a promising strategy for inhibition of both bacterial growth and metallo-β-lactamases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266096 | PMC |
http://dx.doi.org/10.1021/acsinfecdis.0c00083 | DOI Listing |
Viruses
December 2024
Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India.
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).
View Article and Find Full Text PDFViruses
December 2024
International Livestock Research Institute (ILRI), Block-C, First Floor, NASC Complex, CG Centre, DPS Marg, Pusa, New Delhi 110012, India.
Mass vaccination against peste des petits ruminants (PPR) in two southern states of India, namely Andhra Pradesh and Karnataka, has reduced disease outbreaks significantly. The sporadic outbreaks reported now can be attributed in part to the recurring movement of sheep and goats between these contiguous states. This study assessed the present level of economic burden and impact of vaccination on the local system (one state), considering the exposure from the external system (neighboring state) using a system dynamic (SD) model.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).
View Article and Find Full Text PDFNutrients
January 2025
Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India.
Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders among reproductive-aged women. It is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Lifestyle changes are suggested as first-line interventions in managing PCOS.
View Article and Find Full Text PDFLife (Basel)
January 2025
Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!