Methane is a greenhouse gas that contributes to global warming. Hence, effectively removing the low concentration (<1000 ppm) of methane in the environment is an issue that deserves research in the field of catalysis. In this study, oxygen-magnesium bivacancies are simultaneously imbedded into MgO by designing an in situ reduction combustion atmosphere for oxygen release and substituting magnesium with carbon to induce the formation of magnesium vacancies. The DFT calculations reveal that the surface electron density of MgO is improved by the oxygen vacancy structure and the substitution of Mg by C in bulk; this accelerates migration of the charge from the material surface to the adsorbed oxygen species, which leads to abundant surface peroxide species that enable activation and oxidation of methane at a low temperature (below 200 °C). This work could provide a concept for developing non-noble or transition metal oxides for low-temperature activation and conversion of alkanes in the thermocatalytic field through reactive oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c04083DOI Listing

Publication Analysis

Top Keywords

low-temperature methane
4
methane oxidation
4
oxidation triggered
4
triggered peroxide
4
peroxide radicals
4
radicals noble-metal-free
4
noble-metal-free mgo
4
mgo catalyst
4
catalyst methane
4
methane greenhouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!