Oligonucleotides (ONs) are gaining increasing importance as a promising novel class of biopharmaceuticals. Thanks to their fundamental role in gene regulation, they can be used to develop custom-made drugs (also called N-to-1) able to act on the gene expression at pre-translational level. With recent approvals of ON-based therapeutics by the Food and Drug Administration (FDA), a growing demand for high-quality chemically modified ONs is emerging and their market is expected to impressively prosper in the near future. To satisfy this growing market demand, a scalable and economically sustainable ON production is needed. In this paper, the state of the art of the whole ON production process is illustrated with the aim of highlighting the most promising routes toward the auspicated market-size production. In particular, the most recent advancements in both the upstream stage, mainly based on solid-phase synthesis and recombinant technology, and the downstream one, focusing on chromatographic techniques, are reviewed. Since ON production is projected to expand to the large scale, automatized multicolumn countercurrent technologies will reasonably be required soon to replace the current ones based on batch single-column operations. This consideration is supported by a recent cutting-edge application of continuous chromatography for the ON purification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201900226DOI Listing

Publication Analysis

Top Keywords

oligonucleotides current
4
current trends
4
trends innovative
4
innovative applications
4
applications synthesis
4
synthesis characterization
4
characterization purification
4
purification oligonucleotides
4
oligonucleotides ons
4
ons gaining
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!