Fibronectin type III domain containing 4 (FNDC4) belongs to the fibronectin type III domain containing protein family. FNDC5, which is highly homologous to FNDC4, can promote the differentiation of cardiac cells. We aimed to investigate the role of FNDC4 in the differentiation of C2C12 mouse skeletal muscle cells. Western blotting and immunofluorescence analysis showed that FNDC4 gradually increased with the differentiation of C2C12. Muscle injury repair experiments indicated that FNDC4 may promote the repair of injured muscles. When FNDC4 was either overexpressed or knocked down, the expression of desmin and myogenin myogenic marker molecules followed that of FNDC4, suggesting that FNDC4 can influence the differentiation of C2C12. In addition, immunoprecipitation results showed that FNDC4 can interact with the Wnt/β-catenin signaling pathway receptor low-density lipoprotein receptor-related protein 6 (LRP6), and that β-catenin levels in the nucleus decreased after knocking down FNDC4. Exogenous addition of FNDC4 protein could not restore the blocking of differentiation due to inhibition of both Wnt/β-catenin signal transduction and LRP6 activity via the β-catenin inhibitor XAV-939. Overall, our findings indicate that FDNC4 can influence the differentiation of C2C12 by activating Wnt/β-catenin signal transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201902860RRRDOI Listing

Publication Analysis

Top Keywords

differentiation c2c12
20
fibronectin type
12
type iii
12
iii domain
12
fndc4
11
wnt/β-catenin signaling
8
signaling pathway
8
fndc4 promote
8
influence differentiation
8
wnt/β-catenin signal
8

Similar Publications

MiR-495 reverses in the mechanical unloading, random rotating and aging induced muscle atrophy via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 axis.

Arch Biochem Biophys

December 2024

Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China. Electronic address:

Mechanical unloading can lead to homeostasis imbalance and severe muscle disease, in which muscle atrophy was one of the disused diseases. However, there were limited therapeutic targets for such diseases. In this study, miR-495 was found dramatically reduced in atrophic skeletal muscle induced by mechanical unloading models both in vitro and in vivo, including the random positioning model (RPM), tail-suspension (TS) model, and aged mice model.

View Article and Find Full Text PDF

Obesity is a major health concern associated to diabetes, cardiovascular disease, and cancer. Brown adipocytes, which specialise in thermogenesis, offer a potential therapeutic target for obesity prevention and related conditions. This study builds on previous findings of the browning activity of Averrhoa bilimbi hexane fractions and aims to elucidate the underlying mechanisms in vitro.

View Article and Find Full Text PDF

Adipose-derived exosomes ameliorate skeletal muscle atrophy via miR-146a-5p/IGF-1R signaling.

J Nanobiotechnology

December 2024

State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China.

The study of muscle disorders has gained popularity, with a particular emphasis on the relationship between adipose tissue and skeletal muscle. In our investigation, we discovered that the deletion of miR-146a-5p specifically in adipose tissue (aKO) led to a notable rise in mice's mass and adiposity. In contrast, it led to a decline in lean mass, ability to exercise, diameter of muscle fibers, and the levels of genes associated with differentiation.

View Article and Find Full Text PDF

Enhancer Enh483 regulates myoblast proliferation and differentiation of buffalo myoblasts by targeting FAXC.

Cell Tissue Res

December 2024

Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.

A detailed understanding of the precise regulatory mechanisms governing buffalo skeletal muscle is crucial for improving meat quality and yield. Proper skeletal muscle fate decisions necessitate the accurate regulation of key enhancers. This study screened nine potential enhancers linked to muscle development by analysing ATAC-seq data from buffalo myoblasts during the proliferative and differentiative phases.

View Article and Find Full Text PDF

Polygonatum sibiricum polysaccharide ameliorates skeletal muscle aging and mitochondrial dysfunction via PI3K/Akt/mTOR signaling pathway.

Phytomedicine

December 2024

Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Shizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China. Electronic address:

Background: Sarcopenia is currently a life-threatening disease for the elderly. Polygonatum sibiricum polysaccharide (PSP) has anti-oxidative stress and anti-inflammatory effects. However, the effects of PSP on skeletal muscle aging, myoblast differentiation and mitochondrial dysfunction through PI3K/Akt/mTOR signaling pathway has not been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!