Biobanking During the COVID-19 Pandemic.

Biopreserv Biobank

Editor-in-Chief, Biopreservation and Biobanking.

Published: June 2020

Download full-text PDF

Source
http://dx.doi.org/10.1089/bio.2020.29069.jjvDOI Listing

Publication Analysis

Top Keywords

biobanking covid-19
4
covid-19 pandemic
4
biobanking
1
pandemic
1

Similar Publications

Introduction: T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection.

Methods: Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2.

View Article and Find Full Text PDF

Background: Factors leading to severe COVID-19 remain partially known. New biomarkers predicting COVID-19 severity that are also causally involved in disease pathogenesis could improve patient management and contribute to the development of innovative therapies. Autophagy, a cytosolic structure degradation pathway is involved in the maintenance of cellular homeostasis, degradation of intracellular pathogens and generation of energy for immune responses.

View Article and Find Full Text PDF

Generation of induced pluripotent stem cell line from a patient with long COVID.

Stem Cell Res

January 2025

Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA; Baszucki Family Vascular Surgery Biobank, USA; Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA, USA. Electronic address:

Long COVID, or post-acute sequelae of SARS-CoV-2 infection, leads to vascular dysfunction, which contributes to the chronic multi-organ damage often seen in affected patients. Long COVID, a global health concern is associated with increased thrombotic risk, also known as COVID-19-associated coagulopathy (CAC). Here, we derived an induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMCs) of a long COVID patient.

View Article and Find Full Text PDF

Strengthening serological studies: the need for greater geographical diversity, biobanking, and data-accessibility.

Trends Microbiol

January 2025

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.

Serological studies uniquely strengthen infectious disease surveillance, expanding prevalence estimates to encompass asymptomatic infections, and revealing the otherwise inapparent landscape of immunity, including who is and is not susceptible to infection. They are thus a powerful complement to often incomplete epidemiological and public health measures (administrative measures of vaccination coverage, incidence estimates, etc.).

View Article and Find Full Text PDF

Routine use of genetic data in healthcare is much-discussed, yet little is known about its performance in epidemiological models including traditional risk factors. Using severe COVID-19 as an exemplar, we explore the integration of polygenic risk scores (PRS) into disease models alongside sociodemographic and clinical variables. PRS were optimized for 23 clinical variables and related traits previously-associated with severe COVID-19 in up to 450,449 UK Biobank participants, and tested in 9,560 individuals diagnosed in the pre-vaccination era.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!