A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The movement dynamics of autotomized lizards and their tails reveal functional costs of caudal autotomy. | LitMetric

The movement dynamics of autotomized lizards and their tails reveal functional costs of caudal autotomy.

Integr Zool

Department of Organisms and Systems Biology (Zoology), University of Oviedo, Oviedo, Spain.

Published: November 2020

Autotomy has evolved independently several times in different animal lineages. It frequently involves immediate functional costs, so regeneration evolved in many instances to restore the functionality of that body part. Caudal autotomy is a widespread antipredator strategy in lizards, although it may affect energy storage, locomotion dynamics, or survival in future encounters with predators. Here, we assessed the effect of tail loss on the locomotor performance of wall lizards (Podarcis muralis), as well as the recovery of locomotor functionality of lizards with regenerated tails, and the movement dynamics of shed tails that were either intact or having regenerated portions. Tail loss had no effect on locomotion over unhindered spaces, possibly due to compensation between a negative effect on the stride of front limbs, and a positive effect of losing mass and friction force. We found a clear negative impact of tail loss on locomotion in spaces with interspersed obstacles, in which tailed lizards jumped larger distances when leaving the obstacles. Besides, lizards that used the tail to push off the ground were able to approach the obstacles from further, so that the tail seemed to be useful when used during jumping. Regeneration fully restores lizard's locomotor capacities, but tail antipredator value, as indicated by the intensity of post-autotomic movements, is only partially retrieved. From these results, we propose that, together with the recovery of post-autotomy antipredator capacities, the restoration of the organismal locomotor performance may have been an important, yet frequently neglected factor in the evolution of lizard's regeneration ability.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1749-4877.12443DOI Listing

Publication Analysis

Top Keywords

tail loss
12
movement dynamics
8
functional costs
8
caudal autotomy
8
locomotor performance
8
loss locomotion
8
lizards
6
tail
6
dynamics autotomized
4
autotomized lizards
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!