Activatable fluorescent probes for hydrolase enzymes based on coumarin-hemicyanine hybrid fluorophores with large Stokes shifts.

Chem Commun (Camb)

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and CREST (Japan) Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.

Published: May 2020

We show that the equilibrium of intramolecular spirocyclization of coumarin-hemicyanine hybrid fluorophores can be finely tuned by means of chemical modifications. We used this scaffold to develop activatable fluorescent probes with large Stokes shifts for γ-glutamyltranspeptidase and esterase.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc00559bDOI Listing

Publication Analysis

Top Keywords

activatable fluorescent
8
fluorescent probes
8
coumarin-hemicyanine hybrid
8
hybrid fluorophores
8
large stokes
8
stokes shifts
8
probes hydrolase
4
hydrolase enzymes
4
enzymes based
4
based coumarin-hemicyanine
4

Similar Publications

Dual-Locked Enzyme-Activatable Fluorescence Probes for Precise Bioimaging.

ACS Biomater Sci Eng

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.

Real-time visualization of endogenous enzymes not only helps reveal the underlying biological principles but also provides pathological information for cancer/disease diagnosis and even treatment guidance. To this end, enzyme-activatable fluorescence probes are frequently fabricated that turn their fluorescence signals "on" exclusively at the enzyme-rich region, thus enabling noninvasive and real-time imaging of enzymes of interest at the molecular level with superior sensitivity and selectivity. However, in a complex biological context, commonly used single enzyme-activatable (i.

View Article and Find Full Text PDF

Macrocyclic Peptide-Based Dual-Sensor Platform for Linkage-Specific Visualization of Ubiquitin Chain Assembling in Live Cells.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter.

View Article and Find Full Text PDF

Activatable red/near-infrared aqueous organic phosphorescence probes for improved time-resolved bioimaging.

Natl Sci Rev

February 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

Organic red/near-infrared (NIR) room-temperature phosphorescence (RTP) holds significant potential for autofluorescence-free bioimaging and biosensing due to its prolonged persistent luminescence and exceptional penetrability. However, achieving activatable red/NIR organic RTP probes with tunable emission in aqueous solution remains a formidable challenge. Here we report on aqueous organic RTP probes with red/NIR phosphorescence intensity and lifetime amplification.

View Article and Find Full Text PDF

Rational design of hypochlorous acid-activatable fluorescent probe for diagnostic imaging and therapeutic evaluation in breast cancer recurrence.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University 430079 Wuhan, PR China. Electronic address:

The recurrent breast cancer (BC) has elicited significant concern due to its rising recurrence rates and associated mortality. However, there is currently no effective detection method to mitigate the deterioration of BC recurrence. The imbalance of HClO content could lead to oxidative stress in the body, which damaging host tissues.

View Article and Find Full Text PDF

Activatable Photosensitizer Prodrug for Self-Amplified Immune Therapy via Pyroptosis.

Angew Chem Int Ed Engl

January 2025

Hunan University, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistr, 410082, Changsha, CHINA.

Immunotherapy is a promising cancer treatment, but its application is hindered by tumors' low immunogenicity and the difficulty of immune cell infiltration. Here, to address above issues and achieve targeted tumor treatment, we designed the first activated small molecule photosensitizer immune-prodrug HDIM based on pyroptosis, and proposed a self-amplified immune therapy strategy (SITS) for enhanced tumor therapy. HDIMcan be specifically activated by the tumor hypoxiaand then simultaneously initiate immuno-therapy and photodynamic therapy (PDT)-induced pyroptosis with NIR laser irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!