Oligonucleotide aptamers can be converted into structure-switching biosensors by incorporating a short, typically labeled oligonucleotide that is complementary to the analyte-binding region. Binding of a target analyte can disrupt the hybridization equilibrium between the aptamer and the labeled-complementary oligo producing a concentration-dependent signal for target-analyte sensing. Despite its importance in the performance of a biosensor, the mechanism of analyte-response of most structure-switching aptamers is not well understood. In this work, we employ single-molecule fluorescence imaging to investigate the competitive kinetics of association of a labeled complementary oligonucleotide and a target analyte, l-tyrosinamide (L-Tym), interacting with an L-Tym-binding aptamer. The complementary readout strand is fluorescently labeled, allowing us to measure its hybridization kinetics with individual aptamers immobilized on a surface and located with super-resolution techniques; the small-molecule L-Tym analyte is not labeled in order to avoid having an attached dye molecule impact its interactions with the aptamer. We measure the association kinetics of unlabeled L-Tym by detecting its influence on the hybridization of the labeled complementary strand. We find that L-Tym slows the association rate of the complementary strand with the aptamer but does not impact its dissociation rate, suggesting an S1-like mechanism where the complementary strand must dissociate before L-Tym can bind. The competitive model revealed a slow association rate between L-Tym and the aptamer, producing a long-lived L-Tym-aptamer complex that blocks hybridization with the labeled complementary strand. These results provide insight about the kinetics and mechanism of analyte recognition in this structure-switching aptamer, and the methodology provides a general means of measuring the rates of unlabeled-analyte binding kinetics in aptamer-based biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b05563DOI Listing

Publication Analysis

Top Keywords

complementary strand
16
labeled complementary
12
structure-switching aptamer
8
target analyte
8
hybridization labeled
8
association rate
8
aptamer
7
complementary
7
labeled
6
l-tym
6

Similar Publications

We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex).

View Article and Find Full Text PDF

Trace detection of S. aureus cells in food samples via RCA-assisted SERS signal amplification with core-shell nanoprobe.

Talanta

December 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:

Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.

View Article and Find Full Text PDF

The conductivity of Zn-MOF-on-Co-MOF synthesized by one-pot method is improved by searching for the optimum carbonization temperature, which overcomes the limitation of traditional MOF. In order to further enhance electron transfer, the mesoporous PtPdCo trimetal was introduced, which provided considerable load capacity for methylene blue (MB) and reverse complementary DNA (sDNA), and also showed excellent catalytic activity for MB. In this study, the conductivity of aptasensor was improved by modifying carbonized MOF as the base material.

View Article and Find Full Text PDF

Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs.

Talanta

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. Electronic address:

Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA.

View Article and Find Full Text PDF

[Prokaryotic expression and helicase activity analysis of PDCoV NSP13].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.

Article Synopsis
  • Porcine deltacoronavirus (PDCoV) causes severe diarrhea in piglets, and effective prevention methods are currently lacking.
  • Researchers synthesized the PDCoV gene to create a recombinant plasmid that expressed the nonstructural protein 13 (NSP13), which has crucial helicase activity.
  • The study confirmed NSP13's ability to unwind DNA and its regulatory factors, offering insights for future antiviral drug development aimed at combatting PDCoV.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!