When Small becomes Too Big: Expanding the Use of In-Cell Solid-State NMR Spectroscopy.

Chempluschem

NMR Spectroscopy Research Group Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands.

Published: April 2020

Solution-state NMR spectroscopy has become a powerful tool to study soluble proteins in cells, provided that they tumble sufficiently fast. In addition, cryo-electron tomography (cryo-ET) has recently displayed a tremendous potential to probe structures of large proteins and assemblies in their native cellular environments. However, challenges remain to obtain atomic-level information in native cell settings for proteins that are small, disordered, or are strongly engaged in intermolecular interactions. In this Minireview, we discuss recent progress in using sensitivity enhanced solid-state NMR spectroscopy methods in the context of cellular structural biology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202000167DOI Listing

Publication Analysis

Top Keywords

nmr spectroscopy
12
solid-state nmr
8
small big
4
big expanding
4
expanding in-cell
4
in-cell solid-state
4
spectroscopy solution-state
4
solution-state nmr
4
spectroscopy powerful
4
powerful tool
4

Similar Publications

From the leaves of , fourteen compounds were isolated and identified: D-mannitol (), a mixture of β-sitosterol () and stigmasterol (), α-amyrin (), betulin (), lupeol (), lupenone (), betulinic acid (), taraxerol (), 3β-(E)-coumaroyltaraxerol (), 3β-(Z)-coumaroyltaraxerol (), ursolic acid (), stigmasterol 3-O-β-D-glucoside (), and β-sitosterol 3-O-β-D-glucoside (). These compounds were analysed through NMR spectroscopy (both 1D and 2D) and by comparing them to previously published data. Compounds , , , and - have been identified from this species for the first time.

View Article and Find Full Text PDF

Background: Small remnants may penetrate the arterial intima more efficiently compared to large triglyceride-rich lipoproteins (TGRL). We tested the hypothesis that the importance of remnant cholesterol for the risk of atherosclerotic cardiovascular disease (ASCVD) may depend on the size of the remnants and TGRL carrying cholesterol.

Methods: The cholesterol content of small remnants and large TGRL were measured in 25 572 individuals from the Copenhagen General Population Study (2003-2015) and in 222 721 individuals from the UK Biobank (2006-2010) using nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Cortical Neurotransmitters Measured by Magnetic Resonance Spectroscopy Change Following Traumatic Brachial Plexus Injury.

J Brachial Plex Peripher Nerve Inj

January 2025

School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

 GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. In response to injury within the central nervous system, GABA promotes cortical plasticity and represents a potential pharmacological target to improve functional recovery. However, it is unclear how GABA changes in the brain after traumatic brachial plexus injuries (tBPIs) which represents the rationale for this pilot study.

View Article and Find Full Text PDF

Determination of the degree of sulfonation in cross-linked and non-cross-linked Poly(ether ether ketone) using different analytical techniques.

Heliyon

January 2025

Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.

The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.

View Article and Find Full Text PDF

The effects of age and other individual factors on radiation induced ESR signals from fingernails.

Front Public Health

January 2025

Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.

Biodosimetry is crucial for assessing ionizing radiation exposure to guide medical responses. Electron spin resonance (ESR) spectroscopy using fingernails can be effectively used for both occupational and public dose assessments in radiological accidents because of their accessibility and ability to retain stable radiation-induced free radicals. However, despite two decades of research, challenges remain in achieving accurate fingernail dosimetry, mainly owing to the variation in ESR signals among individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!