As electronics dramatically advance, their components should be fabricated for miniaturized scale, and integrated on limited-size substrates with extremely high density. Current technologies for the integration and interconnection of electronics show some critical limitations in the application of microscale electronics. To address these problems, herein, a new direct and vertical interconnection driven by selective dewetting of a polymer adhesive is introduced. The interconnection system consists of the polymer adhesive and nanosized metal particles, or structured electrodes. Nanoscale-dewetting windows formed by controlling the stability and wetting property of the adhesive polymer are controlled by the interfacial property of the coated polymer adhesive. The adhesive is coated on substrate by a simple spin-coating process, and its ultraviolet curable property allows only the device-mounted parts to be selectively conductive and sticky, while the other parts form insulation and protection layers. The interconnection of the electronics and substrate by adhesive makes it possible to apply the technique to various microsize electronics with electrode size and pitch of 20 µm or less, and endure dramatic temperature change and a long-term high humidity environment. Moreover, over display comprising over 10 000 microscale light-emitting diodes (micro-LEDs), and commercialized microchips are demonstrated with monolithic integration on flexible and transparent substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201908422 | DOI Listing |
Int J Biol Macromol
January 2025
Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil. Electronic address:
In this study, sustainable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and pullulan (PUL)/PHBV filaments were prepared with ketoprofen for scaffold preparation. The research aimed evaluate the influence of pullulan in the filament properties, such as thermal, morphological, and biological behavior. Hansen parameters demonstrated the difference in the miscibility of the polymers and drug in the blend.
View Article and Find Full Text PDFBull Math Biol
January 2025
Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
Objectives: To evaluate the shear bond strength (SBS) of universal cements (UCs) to dentin prepared with different diamond burs using various adhesive strategies.
Materials And Methods: One-hundred-twenty molars were prepared to expose the mid-coronal dentin. The teeth were divided into two groups according to diamond bur preparations: coarse and super-fine grit burs.
J Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!