Insulin and epidermal growth factor receptor family members share parallel activation mechanisms.

Protein Sci

Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, Connecticut, USA.

Published: June 2020

AI Article Synopsis

  • Insulin receptor (IR) and epidermal growth factor receptor (EGFR) are two key receptor tyrosine kinases linked to diabetes and cancer, respectively, featuring a shared ligand-binding module despite their unique structures.
  • Both receptors utilize a similar mechanism for activation where ligand binding leads to a "closing" of their binding modules, disrupting autoinhibitory interactions and promoting receptor activation, although they operate through different dimerization processes.
  • Recent cryo-electron microscopy studies provide new insights into how insulin binds to IR, suggesting it also interacts with a second leucine-rich-repeat domain, thereby enhancing our understanding of receptor activation mechanisms in IR and EGFR.

Article Abstract

Insulin receptor (IR) and the epidermal growth factor receptor (EGFR) were the first receptor tyrosine kinases (RTKs) to be studied in detail. Both are important clinical targets-in diabetes and cancer, respectively. They have unique extracellular domain compositions among RTKs, but share a common module with two ligand-binding leucine-rich-repeat (LRR)-like domains connected by a flexible cysteine-rich (CR) domain (L1-CR-L2 in IR/domain, I-II-III in EGFR). This module is linked to the transmembrane region by three fibronectin type III domains in IR, and by a second CR in EGFR. Despite sharing this conserved ligand-binding module, IR and EGFR family members are considered mechanistically distinct-in part because IR is a disulfide-linked (αβ) dimer regardless of ligand binding, whereas EGFR is a monomer that undergoes ligand-induced dimerization. Recent cryo-electron microscopy (cryo-EM) structures suggest a way of unifying IR and EGFR activation mechanisms and origins of negative cooperativity. In EGFR, ligand engages both LRRs in the ligand-binding module, "closing" this module to break intramolecular autoinhibitory interactions and expose new dimerization sites for receptor activation. How insulin binds the activated IR was less clear until now. Insulin was known to associate with one LRR (L1), but recent cryo-EM structures suggest that it also engages the second LRR (albeit indirectly) to "close" the L1-CR-L2 module, paralleling EGFR. This transition simultaneously breaks autoinhibitory interactions and creates new receptor-receptor contacts-remodeling the IR dimer (rather than inducing dimerization per se) to activate it. Here, we develop this view in detail, drawing mechanistic links between IR and EGFR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255510PMC
http://dx.doi.org/10.1002/pro.3871DOI Listing

Publication Analysis

Top Keywords

egfr
9
epidermal growth
8
growth factor
8
factor receptor
8
family members
8
activation mechanisms
8
ligand-binding module
8
cryo-em structures
8
autoinhibitory interactions
8
module
6

Similar Publications

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Background: The benefit of treatment with tyrosine kinase inhibitors targeting the epidermal growth factor receptor (EGFR-TKI) for lung adenocarcinoma (ADC), stratified by ethnicity, has not yet been fully elucidated.

Methods: We searched PubMed, Embase, and Cochrane databases for studies that investigated EGFR-TKI for lung ADC. We computed hazard ratios (HRs) or risk ratios (RRs) for binary endpoints, with 95% confidence intervals (CIs).

View Article and Find Full Text PDF

Excessive Initial Renal Function Decline Following Sodium-Glucose Cotransporter-2 Inhibitor Treatment Predicts Major Adverse Cardiorenal Outcomes.

Mayo Clin Proc

January 2025

Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B) National Yang Ming Chiao Tung University, Hsinchu, Taiwan. Electronic address:

Objective: To investigate how estimated glomerular filtration rate (eGFR) decline following sodium-glucose cotransporter-2 inhibitors (SGLT2i) initiation predicts long-term cardiorenal outcomes.

Methods: From 2016 to 2020, a longitudinal cohort of 4942 diabetic patients treated with SGLT2i were enrolled and followed until December 2021. Patients were categorized into mild (≤30%), moderate (>30%∼≤40%) and severe (>40%) decline groups by the maximal eGFR change between 2 to 12 weeks after SGLT2i treatment.

View Article and Find Full Text PDF

Introduction: Bronchiectasis exacerbation (BE) is associated with unfavorable sequelae in other organs such as the cardiovascular system; data regarding its impact on adverse term renal outcomes, however, is lacking.

Methods: A territory-wide retrospective cohort study was conducted in Hong Kong between 1/1/1993 and 31/12/2017. All patients with bronchiectasis followed in the public healthcare system in 2017 were classified as "Exacerbators" or "Non-Exacerbators," and their adverse renal outcomes (renal progression [decrease in eGFR by 30 mL/min lasted for more than 12 months during follow up], acute kidney injury [AKI], and annual rate of eGFR decline) in the ensuing 7 years were compared.

View Article and Find Full Text PDF

An increased renal resistive index (RRI) and proteinuria can predict an estimated glomerular filtration rate (eGFR) decline in patients with chronic kidney disease (CKD) of various causes. This study hypothesized that the RRI and proteinuria interact to determine disease progression in patients with CKDs of unknown origin. : One hundred and fifty six patients (age 76.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!