Systemic hypoperfusion is intricately involved in neurohormone secretion, vascular calcification (VC) related impaired vasodilation, and luminal stenosis. We aimed to conduct a joint evaluation of vasopressin-neurophysin II-copeptin peptide (VP) and advanced aortic arch calcification (AAC) on all-cause and cardiovascular (CV) mortality in maintenance hemodialysis (MHD) patients. Unadjusted and adjusted hazard ratios (aHRs) of mortality risks were analyzed for different groups of VP and AAC in 167 MHD patients. The modification effect between higher VP and advanced AAC on mortality risk was examined using an interaction product term. Interactions between VP and AAC with respect to all-cause and CV mortality were statistically significant. In multivariable analysis, higher VP predicted all-cause and CV mortality [aHR: 2.2 (95% confidence interval (CI): 1.1-4.5)] and 2.6 (95% CI: 1.1-4.6), respectively. Advanced AAC was associated with incremental risks of all-cause and CV mortality [aHR: 2.1 (95% CI: 1.1-4.0)and 2.5 (95% CI: 1.0-4.3), respectively]. Patients with combined higher VP (>101.5 ng/mL) and advanced AAC were at the greatest risk of all-cause and CV mortality [aHR: 4.7 (95% CI: 1.2-16.2)and 4.9 (95% CI: 1.1-18.9), respectively]. Combined VP and advanced AAC predict not only all-cause but also CV death in MHD patients, and a joint evaluation is more comprehensive than single marker. In light of hypoperfusion and ischemic events in vital organs, VP and AAC could act as more robust dual marker for prognostic assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136408PMC
http://dx.doi.org/10.3389/fmed.2020.00102DOI Listing

Publication Analysis

Top Keywords

advanced aac
16
all-cause mortality
16
joint evaluation
12
mhd patients
12
mortality [ahr
12
[ahr 95%
12
vasopressin-neurophysin ii-copeptin
8
aortic arch
8
arch calcification
8
mortality
8

Similar Publications

Thermally Controlled -site Cation Ordering and Coupled Polarity in Double Perovskite NaLaZrO.

Inorg Chem

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

-site cation ordering in double perovskites is crucially important for their physical properties. In this study, polycrystalline samples of Zr-based double perovskite NaLaZrO were synthesized via high-temperature solid-state reactions, and the influence of the heating temperature and cooling rate on their crystal structures was investigated using synchrotron X-ray diffractometry and optical second harmonic generation. The samples prepared at 1200 °C, followed by slow cooling to room temperature, crystallize in a polar 2 structure, exhibiting partial -site cation ordering, with Na- and La-rich -site layers alternately stacked along the axis.

View Article and Find Full Text PDF

A flexible wearable sensor based on the multiple interaction and synergistic effect of the hydrogel components with anti-freezing, low swelling for human motion detection and underwater communication.

Int J Biol Macromol

January 2025

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China. Electronic address:

To meet the increasing demand for wearable sensor in special environment such as low temperature or underwater, a multifunctional ionic conducting hydrogel (Gel/PSAA-Al hydrogel) with anti-freezing and low swelling for human motion detection and underwater communication was prepared using gelatin (Gel), [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), acrylamide (AAm), acrylic acid (AAc), and AlCl. Due to reversible hydrogen bonding, electrostatic interactions and metal coordination crosslinking between the polymer networks, the resulting Gel/PSAA-Al hydrogels present low swelling property in water and exhibit large tensile properties (~1050 %), high tensile strength (~250 kPa) and excellent fatigue resistance. In addition, the hydration capacity of SBMA and AlCl endows the Gel/PSAA-Al hydrogel fantastic anti-freezing (-31.

View Article and Find Full Text PDF

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Smart hydrogel sensors can respond to stimuli like pH and temperature, with potential uses in biomedical, environmental, and wearable tech.
  • Developing wearable hydrogels that respond to body temperature, adhere well, and are transparent has been challenging.
  • The newly created thermo-responsive hydrogel changes properties based on temperature, is made using 3D printing, and can detect temperature and strain, making it ideal for smart medical applications.
View Article and Find Full Text PDF

This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!