Although ( genes have been identified in several plants, little is known about genes in pears. In this study, a total of 24 genes were identified, in which 10, 5 and 9 were from genome, genome and genome, respectively. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, promoter regions, collinearity and expression were determined with these genes. It was found that only from genes of was relatively highly expressed in leaves during flower bud differentiation. Whereas, expression patterns of homologues, and , were different from in buds. The expression pattern and the treatment of reduction day-length indicated that the expression of in leaves were regulated by day-length and circadian clock. Additionally, the phenotype of transgenic suggested that played a role in not only promoting flower bud differentiation, but also regulating the balance between vegetative and reproductive growth. These results may provide important information for further understanding of the evolution and function of genes in pears.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151754 | PMC |
http://dx.doi.org/10.7717/peerj.8928 | DOI Listing |
Plants (Basel)
December 2024
College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China.
Whether the calyx tube of the Korla fragrant pear falls off seriously affects the fruit quality. 'Xinnonglinxiang' is a mutant variety of the Korla fragrant pear, which has a high calyx removal rate under natural conditions, and calyx tube fall seriously affects the fruit quality. The mechanism behind the high calyx removal rate of 'Xinnonglinxiang' remains unclear; thus, Korla fragrant pear (PT) and 'Xinnonglinxiang' (YB) with different degrees of calyx abscission were used as examples and the abscission areas of calyx tubes were collected in the early (21 April), middle (23 April), and late (25 April) shedding stages to explore the regulatory mechanism behind the abscission.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea.
, the causal agent of fire blight, poses a serious threat to several rosaceous plants, especially apples and pears. In this study, a spontaneous streptomycin-resistant strain (EaSmR) was isolated under laboratory conditions. Compared with the parental strain TS3128, the EaSmR strain exhibited high resistance to streptomycin (>100,000 µg/mL) and showed a significant reduction in both swimming and swarming motility.
View Article and Find Full Text PDFFront Plant Sci
December 2024
The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China.
Abscisic acid (ABA) is a key hormone in plant growth and development, playing a central role in responses to various biotic and abiotic stresses as well as in fruit ripening. The present study examined the impact of ABA and nordihydroguaiaretic acid (NDGA) on various postharvest 'Docteur Jules Guyot' pear fruit characteristics, including firmness, pectinase activity, pectin content, volatile aromatic substances, and the expression of correlated genes. The results showed that ABA quickly reduced fruit firmness, increasing the activity of pectin degradation-related enzymes.
View Article and Find Full Text PDFBMC Microbiol
December 2024
State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China.
Background: Pear black spot is caused by Alternaria tenuissima. It is one of the diseases of concern limiting pear production worldwide. Existing cultivation methods and fungicides are not sufficient to control early blight.
View Article and Find Full Text PDFPhysiol Plant
December 2024
College of Horticulture, Gansu Agricultural University, Lanzhou, China.
Valsa canker, caused by fungal pathogens in Valsa species, is a fungal disease of apple and pear growing in China and even in Asia. Malectin-like kinases play crucial roles in plant recognition of the pathogen-induced signals and subsequent activation of partially host immune responses. However, the role of MEDOS1 (MDS1), a Malectin-like kinase, in plant immunity has not yet been extensively explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!