A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physicochemical stability of an admixture of lidocaine and ketamine in polypropylene syringe used in opioid-free anaesthesia. | LitMetric

Objectives: Opioid-free anaesthesia is a treatment strategy of pain management based on the use of drugs such as lidocaine, ketamine and dexmedetomidine that do not interact significantly with opioid receptors. In particular, these drugs are used by anaesthesiologists to ensure adequate levels of analgesia during surgical procedures for burn patients such as daily wound dressings and graft surgeries. Furthermore, for hypothermia prevention and wound-healing purposes, ambient temperature must be kept high for these patients, usually between 27°C and 30°C. To facilitate the use of this technique, clinicians want to mix lidocaine and ketamine in the same syringe. No stability data is available to determine the feasibility of this admixture and at this temperature. The objective was to study the physicochemical stability of lidocaine 20 mg/mL with ketamine 2.5 mg/mL diluted with 0.9% sodium chloride (0.9% NaCl) stored at 28°C in polypropylene syringe for 48 hours.

Methods: Physical stability was evaluated by visual examination and by measuring turbidity with a spectrophotometer. Chemical stability was determined after preparation and after 6, 24 and 48 hours of conservation with a high performance liquid chromatography and pH measurements. The method was validated according to International Conference on Harmonisation Q2(R1) guidelines.

Results: Both lidocaine (99.98%±1.44%) and ketamine (100.70%±0.95%) retained more than 95% of their initial concentration after 48 hours storage. pH measurements remained stable over the course of the study (less than 0.21 point of variation). No signs of physical instability were observed after visual and subvisual inspections.

Conclusions: The physicochemical stability of lidocaine 20 mg/mL and ketamine 2.5 mg/mL diluted with 0.9% NaCl in a polypropylene syringe stored at 28°C protected from light was demonstrated for 48 hours. This infusion technique is therefore feasible from a pharmaceutical point of view in burn-unit settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147561PMC
http://dx.doi.org/10.1136/ejhpharm-2019-001976DOI Listing

Publication Analysis

Top Keywords

physicochemical stability
12
lidocaine ketamine
12
polypropylene syringe
12
opioid-free anaesthesia
8
stability lidocaine
8
lidocaine 20 mg/ml
8
20 mg/ml ketamine
8
ketamine 25 mg/ml
8
25 mg/ml diluted
8
diluted 09%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!